Abstract
The first synthesis of four new naturally occurring remotely functionalized secondary
mould metabolite anhydrides 1a -d is described starting from N -p -tolyl citraconimide (5 ) in three to six steps and 20-65% overall yields. The condensation of triphenylphosphine-maleimide
adduct 6 with aldehyde 4 furnished the exo -imide 7 , which after isomerization, hydrolysis, and acylation gave aspergillus acid A (1a ) in 54% overall yield in four steps. The condensation of adduct 6 with aldehyde 15 similarly afforded the desired imide 17 in two steps. The acid-catalyzed hydrolysis of imide 17 directly furnished aspergillus acid B (1b ), exposing the latent methyl ketone present as the terminal acetylene. Sodium borohydride
induced chemoselective reduction of aspergillus acid B (1b ) gave aspergillus acid C (1c ), which upon acetic anhydride induced acylation, furnished aspergillus acid D (1d ). A facile Amano PS catalyzed acylation of aspergillus acid C (1c ) gave, in good yield, the desired (+)-aspergillus acid C (1e ) in 70% ee and (-)-aspergillus acid D (1f ) in 72% ee. In the present enzymatic reaction, the anhydride moiety presumably plays
a crucial role in the substrate recognition, binding, and resolution process.
Key words
citraconimide - Wittig condensation - chemoselective reduction - aspergillus acid
- enzymatic resolution
References <A NAME="RZ14605SS-1">1 </A>
NCL Communication No. 6686.
<A NAME="RZ14605SS-2">2 </A>
Adlington RM.
Baldwin JE.
Cox RJ.
Pritchard GJ.
Synlett
2002,
820 ; and references cited therein
<A NAME="RZ14605SS-3">3 </A>
Nicolaou KC.
Baran PS.
Zong Y.-L.
Fong KC.
He Y.
Yoon WH.
Choi H.-S.
Angew. Chem. Int. Ed.
1999,
38:
1676 ; and references cited therein
<A NAME="RZ14605SS-4">4 </A>
Singh SB.
Jayasuriya H.
Silverman KC.
Bonfiglio CA.
Williamsons JM.
Lingham RB.
Bioorg. Med. Chem.
2000,
8:
571
<A NAME="RZ14605SS-5">5 </A>
Wong KC.
Tan GL.
Flavour Fragrance J.
1994,
9:
25
<A NAME="RZ14605SS-6">6 </A>
Boesel R.
Schilcher H.
Planta Med.
1989,
55:
399
<A NAME="RZ14605SS-7">7 </A>
Poll L.
Lewis MJ.
Lebensm.-Wiss. Technol.
1986,
19:
258
<A NAME="RZ14605SS-8">8 </A>
Singh SB.
Zink DL.
Liesch JM.
Goetz MA.
Jenkins RG.
Nallin-Omstead M.
Silverman KC.
Bills GF.
Mosley RT.
Gibbs JB.
Albers-Schonberg G.
Lingham RB.
Tetrahedron
1993,
49:
5917
<A NAME="RZ14605SS-9">9 </A>
Assante G.
Camarda L.
Merlini L.
Nasini G.
Gazz. Chim. Ital.
1979,
109:
151
<A NAME="RZ14605SS-10A">10a </A>
Cheng X.-C.
Kihara T.
Kusakabe H.
Magae J.
Kobayashi Y.
Fang R.-P.
Ni Z.-F.
Shen Y.-C.
Ko K.
Yamaguchi I.
Isono K.
J. Antibiot.
1987,
40:
907
<A NAME="RZ14605SS-10B">10b </A>
Cheng X.-C.
Ubukata M.
Isono K.
J. Antibiot.
1990,
43:
890
<A NAME="RZ14605SS-10C">10c </A>
Cheng X.-C.
Ubukata M.
Isono K.
J. Antibiot.
1990,
43:
809
<A NAME="RZ14605SS-11">11 </A>
Weber W.
Semar M.
Anke T.
Bross M.
Steglich W.
Planta Med.
1992,
58:
56
<A NAME="RZ14605SS-12">12 </A>
Zhang C.-F.
Nakamura N.
Tewtrakul S.
Hattori M.
Sun Q.-S.
Wang Z.-T.
Fujiwara T.
Chem. Pharm. Bull.
2002,
50:
1195
<A NAME="RZ14605SS-13">13 </A>
Adeboya MO.
Edwards RL.
Laessoe T.
Maitland DJ.
Whalley AJS.
Liebigs Ann. Chem.
1996,
1437
<A NAME="RZ14605SS-14">14 </A>
Miyagawa H.
Hamada N.
Sato M.
Ueno T.
Phytochemistry
1994,
36:
1319
<A NAME="RZ14605SS-15">15 </A>
Kinoshira K.
Nakajima S.
Chem. Pharm. Bull.
1958,
6:
31
<A NAME="RZ14605SS-16">16 </A>
Singh SB.
Tetrahedron Lett.
1993,
34:
6521
<A NAME="RZ14605SS-17A">17a </A>
Ratemi ES.
Dolence JM.
Poulter CD.
Vederas JC.
J. Org. Chem.
1996,
61:
6296
<A NAME="RZ14605SS-17B">17b </A>
Kates MJ.
Schauble JH.
J. Org. Chem.
1996,
61:
4164
<A NAME="RZ14605SS-17C">17c </A>
Desai SB.
Argade NP.
J. Org. Chem.
1997,
62:
4862
<A NAME="RZ14605SS-17D">17d </A>
Deshpande AM.
Natu AA.
Argade NP.
J. Org. Chem.
1998,
63:
9557
<A NAME="RZ14605SS-17E">17e </A>
Kar A.
Argade NP.
J. Org. Chem.
2002,
67:
7131 ; and references cited therein, in particular 17a-e
<A NAME="RZ14605SS-18">18 </A>
Buyck LD.
Cagnoli R.
Ghelfi F.
Merighi G.
Mucci A.
Pagnoni UM.
Parsons AF.
Synthesis
2004,
1680
<A NAME="RZ14605SS-19">19 </A>
Mau CJD.
Garneau S.
Scholte AA.
Van Fleet JE.
Vederas JC.
Cornish K.
Eur. J. Biochem.
2003,
270:
3939
<A NAME="RZ14605SS-20A">20a </A>
Gogoi S.
Argade NP.
Tetrahedron
2004,
60:
9093
<A NAME="RZ14605SS-20B">20b </A>
Mondal M.
Argade NP.
Tetrahedron Lett.
2004,
45:
5693
<A NAME="RZ14605SS-20C">20c </A>
Mondal M.
Argade NP.
Synlett
2004,
1243
<A NAME="RZ14605SS-20D">20d </A>
Mangaleswaran S.
Argade NP.
Synthesis
2004,
1560
<A NAME="RZ14605SS-20E">20e </A>
Mhaske SB.
Argade NP.
Tetrahedron
2004,
60:
3417
<A NAME="RZ14605SS-20F">20f </A>
Argade NP.
Balasubramaniyan V.
Heterocycles
2000,
53:
475 ; and references cited therein, in particular 20a-f
<A NAME="RZ14605SS-21A">21a </A>
Easwar S.
Argade NP.
Tetrahedron: Asymmetry
2003,
14:
333
<A NAME="RZ14605SS-21B">21b </A>
Easwar S.
Desai SB.
Argade NP.
Ganesh KN.
Tetrahedron: Asymmetry
2002,
13:
1367
<A NAME="RZ14605SS-21C">21c </A>
Desai SB.
Argade NP.
Ganesh KN.
J. Org. Chem.
1999,
64:
8105
<A NAME="RZ14605SS-21D">21d </A>
Desai SB.
Argade NP.
Ganesh KN.
J. Org. Chem.
1996,
61:
6730
<A NAME="RZ14605SS-22">22 </A>
Hedaya E.
Theodoropulos S.
Tetrahedron
1968,
24:
2241
<A NAME="RZ14605SS-23A">23a </A>
Kim YH.
Park DH.
Byun IS.
Yoon IK.
Park CS.
J. Org. Chem.
1993,
58:
4511
<A NAME="RZ14605SS-23B">23b </A>
Yamamoto K.
Ueno K.
Naemura K.
J. Chem. Soc., Perkin Trans. 1
1991,
2607
<A NAME="RZ14605SS-23C">23c </A>
Nishiyama H.
Kondo M.
Nakamura T.
Itoh K.
Organometallics
1991,
10:
500
<A NAME="RZ14605SS-23D">23d </A>
Imai T.
Tamura T.
Yamamuro A.
Sato T.
Wollmann TA.
Kennedy RM.
Masamune S.
J. Am. Chem. Soc.
1986,
108:
7402
<A NAME="RZ14605SS-23E">23e </A>
Noyori R.
Tomino I.
Nishizawa M.
J. Am. Chem. Soc.
1984,
106:
6709
<A NAME="RZ14605SS-23F">23f </A>
Mukaiyama T.
Tetrahedron
1981,
37:
4111
<A NAME="RZ14605SS-24">24 </A>
Anderson BA.
Hansen MM.
Harkness AR.
Henry CL.
Vicenzi JT.
Zmijewski MJ.
J. Am. Chem. Soc.
1995,
117:
12358
<A NAME="RZ14605SS-25A">25a </A>
Fronza G.
Grasselli P.
Mele A.
Fuganti C.
J. Org. Chem.
1991,
56:
6019
<A NAME="RZ14605SS-25B">25b </A>
Cai Z.-Y.
Ni Y.
Sun J.-K.
Yu X.-D.
Wang Y.-Q.
J. Chem. Soc., Chem. Commun.
1985,
1277
<A NAME="RZ14605SS-26A">26a </A>
Dale JA.
Dull DL.
Mosher HS.
J. Org. Chem.
1969,
34:
2543
<A NAME="RZ14605SS-26B">26b </A>
Dale JA.
Mosher HS.
J. Am. Chem. Soc.
1973,
95:
512
<A NAME="RZ14605SS-27A">27a </A>
Schmid RD.
Verger R.
Angew. Chem., Int. Ed. Engl.
1997,
37:
1608
<A NAME="RZ14605SS-27B">27b </A>
Kazlauskas RJ.
Bornscheuer UT.
Biotechnology-Series
Vol. 8a:
VCH-Wiley;
Weinheim:
1998.
p.37
<A NAME="RZ14605SS-27C">27c </A>
Theil F.
Chem. Rev.
1995,
95:
2203
<A NAME="RZ14605SS-27D">27d </A>
Mori K.
Synlett
1995,
1097
<A NAME="RZ14605SS-27E">27e </A>
Wong C.-H.
Whitesides GM.
Enzymes in Organic Chemistry
Pergamon;
New York: 1994; and references cited therein, in particular 27a-e
<A NAME="RZ14605SS-28">28 </A>
Dupuis C.
Corre C.
Boyaval P.
Appl. Environ. Microbiol.
1993,
59:
4004
<A NAME="RZ14605SS-29">29 </A>
Ogawa Y.
Nakamura N.
Bull. Chem. Soc. Jpn.
1999,
72:
943