Zusammenfassung
Tumoren des Magen-Darm-Traktes unter Einschluss von Malignomen des Magens, des Kolorektum,
der Leber und des Pankreas umfassen weltweit über 50 % aller Tumoren. Die 5-Jahres-Überlebensrate
schwankt zwischen über 50 % bei kolorektalen Tumoren und liegt unter 1 % beim Pankreaskarzinom,
wobei Überlebenszeit und Sterblichkeitsrate bei Tumoren des Magen-Darm-Traktes in
direkter Korrelation mit der Metastasierungskapazität stehen. Tetraspanine sind eine
relativ neue Familie von Membranproteinen, die vornehmlich über die Bildung von Komplexen
mit weiteren Tetraspaninen und einer Vielzahl weiterer Molekülfamilien agieren und
diese in definierten Membrandomänen zusammenführen. Diese lipidreichen Membrandomänen
sind in spezieller Weise zur Initiation von Signaltransduktionskaskaden geeignet.
Komplexbildung, die Generierung einer Plattform für Signaltransduktion und ihrer Eigenschaft
präferenziell in Vesikelform, sog. Exosomen, von der Tumorzelle freigesetzt zu werden,
prädestinieren Tetraspanine für eine zentrale Rolle bei allen Schritten der Metastasierungskaskade.
In Anbetracht dieser multiplen Involvierung der Tetraspanine in den Metastasierungsprozess
und eines sich in den letzten Jahren zunehmend experimentell festigenden Konzepts
zum Prozess der Metastasierung sind diesem kurzen Überblick über die Funktion von
Tetraspaninen, die aus heutiger Sicht zentralen Elemente der Tumorprogression, reversible
Differenzierung von Tumorstammzellen und Bedeutung der Tumor-Wirt-Beziehung, vorangestellt.
Abstract
Tumors of the gastrointestinal tract - gastric, colorectal, pancreatic and liver tumors
- account for over 50 % of cancer worldwide. The 5-year survival rate varies from
> 50 % in colorectal to < 1 % in pancreatic cancer. The high cancer death rate strikingly
correlates with the high metastasizing capacity of most gastrointestinal tumors. Therefore
and because during the last decade several important hypotheses on metastasis formation
could be settled on solid experimental ground, this review will first provide a brief
outline on the currently most accepted view of tumor progression and then discuss
whether and how the rather new family of tetraspanin molecules might contribute to
cancer progression. Notably, some members of this family, in particular, CD82/KAI1
are known as metastasis suppressor genes, while others like CD151 and CO-029 are supposed
to promote metastasis formation. The underlying mechanisms are beginning to become
unraveled. Tetraspanins assemble complexes of different tetraspanins, integrins and
additional transmembrane molecules in microdomains that serve as signaling platform.
By creating proximity, tetraspanins modulate functional activity of the associating
molecules. In addition, tetraspanins actively contribute to the intracellular traffic
of the associating molecules that includes vesicular budding and formation of exosomes
that are particularly rich in tetraspanins. Accordingly, the association of certain
tetraspanins with the metastatic phenotype as well as the definition of other tetraspanins
as metastasis suppressor genes has to be viewed from the perspective of molecular
complexes rather than the individual tetraspanin.
Schlüsselwörter
Tumorprogression - Angiogenese - Tetraspanine - CO-029 - CD82/KAI1
Key words
Tumor progression - angiogenesis - tetraspanins - CO-029 - CD82/KAI1
References
- 1
Shang J, Pena A S.
Multidisciplinary approach to understand the pathogenesis of gastric cancer.
World J Gastroenterol.
2005;
11
4131-4139
- 2
Moehler M, Teufel A, Galle P R.
New chemotherapeutic strategies in colorectal cancer.
Recent Results Cancer Res.
2005;
165
250-259
- 3
Thomas M B, Abbruzzese J L.
Opportunities for targeted therapies in hepatocellular carcinoma.
J Clin Oncol.
2005;
23
8093-8108
- 4
Keleg S, Büchler P, Ludwig R. et al .
Invasion and metastasis in pancreatic cancer.
Mol Cancer.
2003;
2
14
- 5
Dixon E, Vollmer Jr C M, Sahajpal A. et al .
An aggressive surgical approach leads to improved survival in patients with gallbladder
cancer: a 12-year study at a North American Center.
Ann Surg.
2005;
241
385-394
- 6
Liotta L A, Kohn E C.
The microenvironment of the tumour-host interface.
Nature.
2001;
411
375-379
- 7
Fidler I J.
The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited.
Nat Rev Cancer.
2003;
3
453-458
- 8
Auerbach R.
Patterns of tumor metastasis: organ selectivity in the spread of cancer cells.
Lab Invest.
1988;
58
361-364
- 9
Sell S, Pierce G B.
Maturation arrest of stem cell differentiation is a common pathway for the cellular
origin of teratocarcinomas and epithelial cancers.
Lab Invest.
1994;
70
6-22
- 10
Damjanov I, Solter D.
Embryo-derived teratocarcinomas elicit splenomegaly in syngeneic host.
Nature.
1974;
249
569-571
- 11
Fialkow P J, Martin P J, Najfeld V. et al .
Evidence for a multistep pathogenesis of chronic myelogenous leukemia.
Blood.
1981;
58
158-163
- 12
Müller A, Homey B, Soto H. et al .
Involvement of chemokine receptors in breast cancer metastasis.
Nature.
2001;
410
50-56
- 13
Prindull G, Zipori D.
Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal
transitions as a paradigm.
Blood.
2004;
103
2892-2899
- 14
Blau H M, Brazelton T R, Weimann J M.
The evolving concept of a stem cell: entity or function?.
Cell.
2001;
105
829-841
- 15
Quesenberry P J, Colvin G A, Lambert J F.
The chiaroscuro stem cell: a unified stem cell theory.
Blood.
2002;
100
4266-4271
- 16
Thiery J P.
Epithelial-mesenchymal transitions in development and pathologies.
Curr Opin Cell Biol.
2003;
15
740-746
- 17
Jechlinger M, Grunert S, Beug H.
Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and
expression profiling.
J Mammary Gland Biol Neoplasia.
2002;
7
415-432
- 18
Oft M, Akhurst R J, Balmain A.
Metastasis is driven by sequential elevation of H-ras and Smad2 levels.
Nat Cell Biol.
2002;
4
487-494
- 19
Huber M A, Kraut N, Beug H.
Molecular requirements for epithelial-mesenchymal transition during tumor progression.
Curr Opin Cell Biol.
2005;
17
548-558
- 20
Schramek H, Feifel E, Marschitz I. et al .
Loss of active MEK1-ERK1/2 restores epithelial phenotype and morphogenesis in transdifferentiated
MDCK cells.
Am J Physiol Cell Physiol.
2003;
285
C652-661
- 21
Janda E, Lehmann K, Killisch I. et al .
Ras and TGF(beta) cooperatively regulate epithelial cell plasticity and metastasis:
dissection of Ras signaling pathways.
J Cell Biol.
2002;
156
299-313
- 22
Yamashita S, Miyagi C, Fukada T. et al .
Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula
organizer.
Nature.
2004;
429
298-302
- 23
Cano A, Perez-Moreno M A, Rodrigo I. et al .
The transcription factor snail controls epithelial-mesenchymal transitions by repressing
E-cadherin expression.
Nat Cell Biol.
2000;
2
76-83
- 24
Prindull G.
Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs
and metastatic cancer cells?.
Exp Hematol.
2005;
33
738-746
- 25
Nelson W J, Nusse R.
Convergence of Wnt, beta-catenin, and cadherin pathways.
Science.
2004;
303
1483-1487
- 26
Nieto M A.
The snail superfamily of zinc-finger transcription factors.
Nat Rev Mol Cell Biol.
2002;
3
155-166
- 27
Yang J, Mani S A, Donaher J L. et al .
Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis.
Cell.
2004;
117
927-939
- 28
Huber M A, Azoitei N, Baumann B. et al .
NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model
of breast cancer progression.
J Clin Invest.
2004;
114
569-581
- 29
Egeblad M, Werb Z.
New functions for the matrix metalloproteinases in cancer progression.
Nat Rev Cancer.
2002;
2
161-174
- 30
Grunert S, Jechlinger M, Beug H.
Diverse cellular and molecular mechanisms contribute to epithelial plasticity and
metastasis.
Nat Rev Mol Cell Biol.
2003;
4
657-665
- 31
Brabletz T, Jung A, Spaderna S. et al .
Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression.
Nat Rev Cancer.
2005;
5
744-749
- 32
Linares-Cruz G, Bruzzoni-Giovanelli H, Alvaro V. et al .
p21WAF-1 reorganizes the nucleus in tumor suppression.
Proc Natl Acad Sci USA.
1998;
95
1131-1135
- 33
Portella G, Cumming S A, Liddell J. et al .
Transforming growth factor beta is essential for spindle cell conversion of mouse
skin carcinoma in vivo: implications for tumor invasion.
Cell Growth Differ.
1998;
9
393-404
- 34
Rosivatz E, Becker I, Specht K. et al .
Differential expression of the epithelial-mesenchymal transition regulators snail,
SIP1, and twist in gastric cancer.
Am J Pathol.
2002;
161
1881-1891
- 35
Nakajima S, Doi R, Toyoda E. et al .
N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma.
Clin Cancer Res.
2004;
10
4125-4133
- 36
Holtzer H, Biehl J, Yeoh G. et al .
Effect of oncogenic virus on muscle differentiation.
Proc Natl Acad Sci USA.
1975;
72
4051-4055
- 37
Tapscott S J.
The circuitry of a master switch: Myod and the regulation of skeletal muscle gene
transcription.
Development.
2005;
132
2685-2695
- 38
de la Serna I L, Ohkawa Y, Berkes C A. et al .
MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming
a stable DNA-bound complex.
Mol Cell Biol.
2005;
25
3997-4009
- 39
Gangenahalli G U, Gupta P, Saluja D. et al .
Stem cell fate specification: role of master regulatory switch transcription factor
PU.1 in differential hematopoiesis.
Stem Cells Dev.
2005;
14
140-152
- 40
Kim L, Kimmel A R.
GSK3, a master switch regulating cell-fate specification and tumorigenesis.
Curr Opin Genet Dev.
2000;
10
508-514
- 41
Kang Y, Massague J.
Epithelial-mesenchymal transitions: twist in development and metastasis.
Cell.
2004;
118
277-279
- 42
Mareel M M, Van Roy F M, Bracke M E.
How and when do tumor cells metastasize?.
Crit Rev Oncog.
1993;
4
559-594
- 43
Killion J J, Radinsky R, Fidler I J.
Orthotopic models are necessary to predict therapy of transplantable tumors in mice.
Cancer Metastasis Rev.
1998 - 99;
- 44
Wyckoff J B, Jones J G, Condeelis J S. et al .
A critical step in metastasis: in vivo analysis of intravasation at the primary tumor.
Cancer Res.
2000;
60
2504-2511
- 45
Schedin P, Elias A.
Multistep tumorigenesis and the microenvironment.
Breast Cancer Res.
2004;
6
93-101
- 46
Werb Z.
ECM and cell surface proteolysis: regulating cellular ecology.
Cell.
1997;
91
439-442
- 47
Coussens L M, Tinkle C L, Hanahan D. et al .
MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.
Cell.
2000;
103
481-490
- 48
Tomakidi P, Mirancea N, Fusenig N E. et al .
Defects of basement membrane and hemidesmosome structure correlate with malignant
phenotype and stromal interactions in HaCaT-Ras xenografts.
Differentiation.
1999;
64
263-275
- 49
Park C C, Bissell M J, Barcellos-Hoff M H.
The influence of the microenvironment on the malignant phenotype.
Mol Med Today.
2000;
6
324-329
- 50
Micke P, Ostman A.
Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer
therapy?.
Lung Cancer.
2004;
45 (Suppl 2)
S163-175
- 51
Menke A, Adler G.
TGFbeta-induced fibrogenesis of the pancreas.
Int J Gastrointest Cancer.
2002;
31
41-46
- 52
Berger J C, Vander Griend D J, Robinson V L. et al .
Metastasis suppressor genes: from gene identification to protein function and regulation.
Cancer Biol Ther.
2005;
4 (8)
Epub ahead of print
- 53
Keller E T, Fu Z, Brennan M.
The biology of a prostate cancer metastasis suppressor protein: Raf kinase inhibitor
protein.
J Cell Biochem.
2005;
94
273-278
- 54
Bissell M J, Radisky D.
Putting tumours in context.
Nat Rev Cancer.
2001;
1
46-54
- 55
Mercurio A M, Rabinovitz I.
Towards a mechanistic understanding of tumor invasion - lessons from the alpha6beta
4 integrin.
Semin Cancer Biol.
2001;
11
129-141
- 56
Sheppard D.
Integrin-mediated activation of latent transforming growth factor beta.
Cancer Metastasis Rev.
2005;
24
395-402
- 57
Webb D J, Parsons J T, Horwitz A F.
Adhesion assembly, disassembly and turnover in migrating cells - over and over and
over again.
Nat Cell Biol.
2002;
4
E97-100
- 58
Dai C, Celestino J C, Okada Y. et al .
PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas
and oligoastrocytomas from neural progenitors and astrocytes in vivo.
Genes Dev.
2001;
15
1913-1925
- 59
Brooks P C, Stromblad S, Sanders L C. et al .
Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by
interaction with integrin alpha v beta 3.
Cell.
1996;
85
683-693
- 60
Blasi F, Carmeliet P.
uPAR: a versatile signalling orchestrator.
Nat Rev Mol Cell Biol.
2002;
3
932-943
- 61
Lipscomb E A, Mercurio A M.
Mobilization and activation of a signaling competent alpha6beta4integrin underlies
its contribution to carcinoma progression.
Cancer Metastasis Rev.
2005;
24
413-423
- 62
Moos M, Tacke R, Scherer H. et al .
Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding
domains similar to fibronectin.
Nature.
1988;
334
701-703
- 63
Konstantopoulos K, Hanley W D, Wirtz D.
Receptor-ligand binding: “catch” bonds finally caught.
Curr Biol.
2003;
13
R611-613
- 64
Witz I P.
The involvement of selectins and their ligands in tumor-progression.
Immunol Lett.
2005;
104
89-93
- 65
Naor D, Sionov R V, Ish-Shalom D.
CD44: structure, function, and association with the malignant process.
Adv Cancer Res.
1997;
71
241-319
- 66
Ponta H, Sherman L, Herrlich P A.
CD44: from adhesion molecules to signalling regulators.
Nat Rev Mol Cell Biol.
2003;
4
33-45
- 67
Marhaba R, Zöller M.
CD44 in cancer progression: adhesion, migration and growth regulation.
J Mol Histol.
2004;
35
211-231
- 68
Günthert U, Hofmann M, Rudy W. et al .
A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells.
Cell.
1991;
65
13-24
- 69
Günthert U.
CD44 in malignant disorders.
Curr Top Microbiol Immunol.
1996;
213
271-285
- 70
Hagedorn H G, Bachmeier B E, Nerlich A G.
Synthesis and degradation of basement membranes and extracellular matrix and their
regulation by TGF-beta in invasive carcinomas.
Int J Oncol.
2001;
18
669-681
- 71
Skrzydlewska E, Sulkowska M, Koda M. et al .
Proteolytic-antiproteolytic balance and its regulation in carcinogenesis.
World J Gastroenterol.
2005;
11
1251-1266
- 72
Werb Z, Vu T H, Rinkenberger J L. et al .
Matrix-degrading proteases and angiogenesis during development and tumor formation.
APMIS.
1999;
107
11-18
- 73
McCawley L J, Matrisian L M.
Matrix metalloproteinases: they’re not just for matrix anymore!.
Curr Opin Cell Biol.
2001;
13
534-540
- 74
Murphy G, Stanton H, Cowell S. et al .
Mechanisms for pro matrix metalloproteinase activation.
APMIS.
1999;
107
38-44
- 75
Lambert E, Dasse E, Haye B. et al .
TIMPs as multifacial proteins.
Crit Rev Oncol Hematol.
2004;
49
187-198
- 76
Sidenius N, Blasi F.
The urokinase plasminogen activator system in cancer: recent advances and implication
for prognosis and therapy.
Cancer Metastasis Rev.
2003;
22
205-222
- 77
Ploug M.
Structure-function relationships in the interaction between the urokinase-type plasminogen
activator and its receptor.
Curr Pharm Des.
2003;
9
1499-1528
- 78
Dellas C, Loskutoff D J.
Historical analysis of PAI-1 from its discovery to its potential role in cell motility
and disease.
Thromb Haemost.
2005;
93
631-640
- 79
Myohanen H, Vaheri A.
Regulation and interactions in the activation of cell-associated plasminogen.
Cell Mol Life Sci.
2004;
61
2840-2858
- 80
Huovila A P, Turner A J, Pelto-Huikko M. et al .
Shedding light on ADAM metalloproteinases.
Trends Biochem Sci.
2005;
30
413-422
- 81
Ludwig A, Hundhausen C, Lambert M H. et al .
Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and
ADAM17 that differentially block constitutive and phorbol ester-inducible shedding
of cell surface molecules.
Comb Chem High Throughput Screen.
2005;
8
161-171
- 82
Blobel C P.
ADAMs: key components in EGFR signalling and development.
Nat Rev Mol Cell Biol.
2005;
6
32-43
- 83
Vlodavsky I, Goldshmidt O, Zcharia E. et al .
Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development.
Semin Cancer Biol.
2002;
12
121-129
- 84
Sanderson R D, Yang Y, Suva L J. et al .
Heparan sulfate proteoglycans and heparanase - partners in osteolytic tumor growth
and metastasis.
Matrix Biol.
2004;
23
341-352
- 85
Simizu S, Ishida K, Osada H.
Heparanase as a molecular target of cancer chemotherapy.
Cancer Sci.
2004;
95
553-558
- 86
Kim J B.
Three-dimensional tissue culture models in cancer biology.
Semin Cancer Biol.
2005;
15
365-377
- 87
Presta M, Dell’Era P, Mitola S. et al .
Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.
Cytokine Growth Factor Rev.
2005;
16
159-178
- 88
Dibrov A, Kashour T, Amara F M.
The role of transforming growth factor beta signaling in messenger RNA stability.
Growth Factors.
2006;
24
1-11
- 89
Tanaka T, Bai Z, Srinoulprasert Y. et al .
Chemokines in tumor progression and metastasis.
Cancer Sci.
2005;
96
317-322
- 90
Zlotnik A.
Chemokines in neoplastic progression.
Semin Cancer Biol.
2004;
14
181-185
- 91
Balkwill F.
The significance of cancer cell expression of the chemokine receptor CXCR4.
Semin Cancer Biol.
2004;
14
171-179
- 92
Kucia M, Reca R, Miekus K. et al .
Trafficking of normal stem cells and metastasis of cancer stem cells involve similar
mechanisms: pivotal role of the SDF-1-CXCR4 axis.
Stem Cells.
2005;
23
879-894
- 93
Ding Y, Shimada Y, Maeda M. et al .
Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous
cell carcinoma.
Clin Cancer Res.
2003;
9
3406-3412
- 94
Standal T, Borset M, Sundan A.
Role of osteopontin in adhesion, migration, cell survival and bone remodeling.
Exp Oncol.
2004;
26
179-184
- 95
Rangaswami H, Bulbule A, Kundu G C.
Osteopontin: role in cell signaling and cancer progression.
Trends Cell Biol.
2006;
16
79-87 Epub ahead of print
- 96
Steeg P S.
Perspectives on classic article: metastasis suppressor genes.
J Natl Cancer Inst.
2004;
96
E4-6
- 97
Folkman J.
Endogenous angiogenesis inhibitors.
APMIS.
2004;
112
496-4507
- 98
De Cicco M.
The prothrombotic state in cancer: pathogenic mechanisms.
Crit Rev Oncol Hematol.
2004;
50
187-196
- 99
Khorana A A, Fine R L.
Pancreatic cancer and thromboembolic disease.
Lancet Oncol.
2004;
5
655-663
- 100
Harper J, Moses M A.
Molecular regulation of tumor angiogenesis: mechanisms and therapeutic implications.
EXS.
2006;
96
223-268
- 101
Maxwell P H.
The HIF pathway in cancer.
Semin Cell Dev Biol.
2005;
16
523-530
- 102
Liao F, Li Y, O’Connor W. et al .
Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis,
tumor growth, and metastasis.
Cancer Res.
2000;
60
6805-6810
- 103
Hashizume H, Baluk P, Morikawa S. et al .
Openings between defective endothelial cells explain tumor vessel leakiness.
Am J Pathol.
2000;
156
1363-1380
- 104
Giordano F J, Johnson R S.
Angiogenesis: the role of the microenvironment in flipping the switch.
Curr Opin Genet Dev.
2001;
11
35-40
- 105
Carmeliet P, Jain R K.
Angiogenesis in cancer and other diseases.
Nature.
2000;
407
249-257
- 106
Park C, Lugus J J, Choi K.
Stepwise commitment from embryonic stem to hematopoietic and endothelial cells.
Curr Top Dev Biol.
2005;
66
1-36
- 107
Ho H K, Jang J J, Kaji S. et al .
Developmental endothelial locus-1 (Del-1), a novel angiogenic protein: its role in
ischemia.
Circulation.
2004;
109
1314-1319
- 108
Robinson S C, Coussens L M.
Soluble mediators of inflammation during tumor development.
Adv Cancer Res.
2005;
93
159-187
- 109
Prandoni P, Falanga A, Piccioli A.
Cancer and venous thromboembolism.
Lancet Oncol.
2005;
6
401-410
- 110
Pei D.
Matrix metalloproteinases target protease-activated receptors on the tumor cell surface.
Cancer Cell.
2005;
7
207-208
- 111
Murugappan S, Shankar H, Kunapuli S P.
Platelet receptors for adenine nucleotides and thromboxane A2.
Semin Thromb Hemost.
2004;
30
411-418
- 112
Boucheix C, Rubinstein E.
Tetraspanins.
Cell Mol Life Sci.
2001;
58
1189-2205
- 113
Yunta M, Lazo P A.
Tetraspanin proteins as organisers of membrane microdomains and signalling complexes.
Cell Signal.
2003;
15
559-564
- 114
Levy S, Shoham T.
The tetraspanin web modulates immune-signalling complexes.
Nat Rev Immunol.
2005;
5
136-148
- 115
Hemler M E.
Tetraspanin functions and associated microdomains.
Nat Rev Mol Cell Biol.
2005;
6
801-811
- 116
Kazarov A R, Yang X, Stipp C S. et al .
An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent
cellular morphology.
J Cell Biol.
2002;
158
1299-1309
- 117
Zhu G Z, Miller B J, Boucheix C. et al .
Residues SFQ (173 - 175) in the large extracellular loop of CD9 are required for gamete
fusion.
Development.
2002;
129
1995-2002
- 118
Stipp C S, Kolesnikova T V, Hemler M E.
Functional domains in tetraspanin proteins.
Trends Biochem Sci.
2003;
28
106-112
- 119
Berditchevski F.
Complexes of tetraspanins with integrins: more than meets the eye.
J Cell Sci.
2001;
114
4143-4151
- 120
Levy S, Todd S C, Maecker H T.
CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the
immune system.
Annu Rev Immunol.
1998;
16
89-109
- 121
Chattopadhyay N, Wang Z, Ashman L K. et al .
alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates
PTPmu expression and cell-cell adhesion.
J Cell Biol.
2003;
163
1351-1362
- 122
Lämmerding J, Kazarov A R, Huang H. et al .
Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening.
Proc Natl Acad Sci USA.
2003;
100
7616-7621
- 123
Herlevsen M, Schmidt D S, Miyazaki K. et al .
The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell
motility and liver metastasis formation.
J Cell Sci.
2003;
116
4373-4390
- 124
Yang X, Claas C, Kraeft S K. et al .
Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions,
subcellular distribution, and integrin-dependent cell morphology.
Mol Biol Cell.
2002;
13
767-781
- 125
Berditchevski F, Odintsova E, Sawada S. et al .
Expression of the palmitoylation-deficient CD151 weakens the association of alpha
3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent
signaling.
J Biol Chem.
2002;
277
36 991-37 000
- 126
Clark K L, Oelke A, Johnson M E. et al .
CD81 associates with 14 - 3-3 in a redox-regulated palmitoylation-dependent manner.
J Biol Chem.
2004;
279
19 401-19 406
- 127
Claas C, Wahl J, Orlicky D J. et al .
The tetraspanin D6.1A and its molecular partners on rat carcinoma cells.
Biochem J.
2005;
389
99-110
- 128
Cherukuri A, Carter R H, Brooks S. et al .
B cell signaling is regulated by induced palmitoylation of CD81.
J Biol Chem.
2004;
279
31 973-31 982
- 129
Claas C, Stipp C S, Hemler M E.
Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation
to lipid rafts.
J Biol Chem.
2001;
276
7974-7984
- 130
Hakomori S I.
Inaugural Article: The glycosynapse.
Proc Natl Acad Sci USA.
2002;
99
225-232
- 131
Kawakami Y, Kawakami K, Steelant W F. et al .
Tetraspanin CD9 is a “proteolipid,” and its interaction with alpha 3 integrin in microdomain
is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell
motility.
J Biol Chem.
2002;
277
34 349-34 358
- 132
Simons K, Toomre D.
Lipid rafts and signal transduction.
Nat Rev Mol Cell Biol.
2000;
1
31-39
- 133
Kovalenko O V, Yang X, Kolesnikova T V. et al .
Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine
residues available for cross-linking.
Biochem J.
2004;
377
407-417
- 134
De Curtis I.
Cell migration: GAPs between membrane traffic and the cytoskeleton.
EMBO Rep.
2001;
2
277-281
- 135
Hanks S K, Ryzhova L, Shin N Y. et al .
Focal adhesion kinase signaling activities and their implications in the control of
cell survival and motility.
Front Biosci.
2003;
8
982-996
- 136
Schlaepfer D D, Mitra S K.
Multiple connections link FAK to cell motility and invasion.
Curr Opin Genet Dev.
2004;
14
92-101
- 137
Zhang X A, Bontrager A L, Hemler M E.
Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC)
and link PKC to specific beta(1) integrins.
J Biol Chem.
2001;
276
25 005-25 013
- 138
Shigeta M, Sanzen N, Ozawa M. et al .
CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin
cytoskeletal reorganization.
J Cell Biol.
2003;
163
165-176
- 139
Friedl P, Bröcker E B.
T cell migration in three-dimensional extracellular matrix: guidance by polarity and
sensations.
Dev Immunol.
2000;
7
249-266
- 140
Powelka A M, Sun J, Li J. et al .
Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11.
Traffic.
2004;
5
20-36
- 141
Del P ozo MA.
Integrin signaling and lipid rafts.
Cell Cycle.
2004;
3
725-728
- 142
Lau L M, Wee J L, Wright M D. et al .
The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3
signaling and platelet function.
Blood.
2004;
104
2368-2375
- 143
Serru V, Le N aour F, Billard M. et al .
Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1)
under conditions disrupting tetraspan interactions.
Biochem J.
1999;
340
103-111
- 144
Feigelson S W, Grabovsky V, Shamri R. et al .
The CD81 tetraspanin facilitates instantaneous leukocyte VLA-4 adhesion strengthening
to vascular cell adhesion molecule 1 (VCAM-1) under shear flow.
J Biol Chem.
2003;
278
51 203-51 212
- 145
Hung A Y, Sheng M.
PDZ domains: structural modules for protein complex assembly.
J Biol Chem.
2002;
277
5699-5702
- 146
Murayama Y, Miyagawa J, Oritani K. et al .
CD9-mediated activation of the p46 Shc isoform leads to apoptosis in cancer cells.
J Cell Sci.
2004;
117
3379-3388
- 147
Tachibana I, Hemler M E.
Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion
and myotube maintenance.
J Cell Biol.
1999;
146
893-904
- 148
Ono M, Handa K, Withers D A. et al .
Motility inhibition and apoptosis are induced by metastasis-suppressing gene product
CD82 and its analogue CD9, with concurrent glycosylation.
Cancer Res.
1999;
59
2335-2339
- 149
Delaguillaumie A, Lagaudriere-Gesbert C, Popoff M R. et al .
Rho GTPases link cytoskeletal rearrangements and activation processes induced via
the tetraspanin CD82 in T lymphocytes.
J Cell Sci.
2002;
115
433-443
- 150
Carloni V, Mazzocca A, Ravichandran K S.
Tetraspanin CD81 is linked to ERK/MAPKinase signaling by Shc in liver tumor cells.
Oncogene.
2004;
23
1566-1374
- 151
Shi W, Fan H, Shum L. et al .
The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced
EGF receptor activation and cell proliferation.
J Cell Biol.
2000;
148
591-602
- 152
Yan Y, Shirakabe K, Werb Z.
The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor
by G protein-coupled receptors.
J Cell Biol.
2002;
158
221-226
- 153
Bienstock R J, Barrett J C.
KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions
with binding partners: integrins, cadherins, and cell-surface receptor proteins.
Mol Carcinog.
2001;
32
139-153
- 154
Anzai N, Lee Y, Youn B S. et al .
C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally
distinct subunit in human hematopoietic progenitors.
Blood.
2002;
99
4413-4421
- 155
Stein K K, Primakoff P, Myles D.
Sperm-egg fusion: events at the plasma membrane.
J Cell Sci.
2004;
117
6269-6274
- 156
Schwander M, Leu M, Stumm M. et al .
Beta1 integrins regulate myoblast fusion and sarcomere assembly.
Dev Cell.
2003;
4
673-685
- 157
Hemler M E.
Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and
define a novel type of membrane microdomain.
Annu Rev Cell Dev Biol.
2003;
19
397-422
- 158
Garcia E, Pion M, Pelchen-Matthews A. et al .
HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of
tetraspanin sorting to the immunological synapse.
Traffic.
2005;
6
488-501
- 159
Kobayashi T, Vischer U M, Rosnoblet C. et al .
The tetraspanin CD63/lamp3 cycles between endocytic and secretory compartments in
human endothelial cells.
Mol Biol Cell.
2000;
11
1829-1843
- 160
Wubbolts R, Leckie R S, Veenhuizen P T. et al .
Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications
for their function and multivesicular body formation.
J Biol Chem.
2003;
278
10 963-10 972
- 161
Heijnen H F, Van Lier M, Waaijenborg S. et al .
Concentration of rafts in platelet filopodia correlates with recruitment of c-Src
and CD63 to these domains.
J Thromb Haemost.
2003;
1
1161-1173
- 162
Masciopinto F, Giovani C, Campagnoli S. et al .
Association of hepatitis C virus envelope proteins with exosomes.
Eur J Immunol.
2004;
34
2834-2842
- 163
Denzer K, Kleijmeer M J, Heijnen H F. et al .
Exosome: from internal vesicle of the multivesicular body to intercellular signaling
device.
J Cell Sci.
2000;
113
3365-3374
- 164
Butler J S.
The yin and yang of the exosome.
Trends Cell Biol.
2002;
12
90-96
- 165
Fevrier B, Raposo G.
Exosome secretion: the art of reutilizing nonrecycled proteins?.
Curr Opin Cell Biol.
2004;
16
415-421
- 166
de Gassart A, Geminard C, Hoekstra D. et al .
Exosomes: endosomal-derived vesicles shipping extracellular messages.
Traffic.
2004;
5
896-903
- 167
Zhang X A, Kazarov A R, Yang X. et al .
Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis.
Mol Biol Cell.
2002;
13
1-11
- 168
He B, Liu L, Cook G A. et al .
Tetraspanin CD82 attenuates cellular morphogenesis through down-regulating integrin
alpha6-mediated cell adhesion.
J Biol Chem.
2005;
280
3346-3354
- 169
Klein-Soyer C, Azorsa D O, Cazenave J P. et al .
CD9 participates in endothelial cell migration during in vitro wound repair.
Arterioscler Thromb Vasc Biol.
2000;
20
360-369
- 170
Longo N, Yanez-Mo M, Mittelbrunn M. et al .
Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial
invasion of melanoma cells.
Blood.
2001;
98
3717-3726
- 171
Wright M D, Geary S M, Fitter S. et al .
Characterization of mice lacking the tetraspanin superfamily member CD151.
Mol Cell Biol.
2004;
24
5978-5988
- 172
Kagawa H, Nomura S, Miyake T. et al .
Expression of prothrombinase activity and CD9 antigen on the surface of small vesicles
from stimulated human endothelial cells.
Thromb Res.
1995;
80
451-460
- 173
Odintsova E, Sugiura T, Berditchevski F.
Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin
CD82/KAI-1.
Curr Biol.
2000;
10
1009-1012
- 174
Claas C, Seiter S, Claas A. et al .
Association between the rat homologue of CO-029, a metastasis-associated tetraspanin
molecule and consumption coagulopathy.
J Cell Biol.
1998;
141
267-280
- 175
Testa J E, Brooks P C, Lin J M. et al .
Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies
a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis.
Cancer Res.
1999;
59
3812-3820
- 176
Wright M D, Moseley G W, van Spriel A B.
Tetraspanin microdomains in immune cell signalling and malignant disease.
Tissue Antigens.
2004;
64
533-542
- 177
Boucheix C, Duc G H, Jasmin C. et al .
Tetraspanins and malignancy.
Expert Rev Mol Med.
2001;
Jan 31
1-17
- 178
Barrio M M, Bravo A I, Portela P. et al .
A new epitope on human melanoma-associated antigen CD63/ME491 expressed by both primary
and metastatic melanoma.
Hybridoma.
1998;
17
355-364
- 179
Kawashima M, Doh-ura K, Mekada E. et al .
CD9 expression in solid non-neuroepithelial tumors and infiltrative astrocytic tumors.
J Histochem Cytochem.
2002;
50
1195-1203
- 180
Hori H, Yano S, Koufuji K. et al .
CD9 expression in gastric cancer and its significance.
J Surg Res.
2004;
117
208-215
- 181
Szala S, Kasai Y, Steplewski Z. et al .
Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification
of related transmembrane antigens.
Proc Natl Acad Sci USA.
1990;
87
6833-6837
- 182
Hashida H, Takabayashi A, Tokuhara T. et al .
Clinical significance of transmembrane 4 superfamily in colon cancer.
Br J Cancer.
2003;
89
158-167
- 183
Kanetaka K, Sakamoto M, Yamamoto Y. et al .
Overexpression of tetraspanin CO-029 in hepatocellular carcinoma.
J Hepatol.
2001;
35
637-642
- 184
Sho M, Adachi M, Taki T. et al .
Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer.
Int J Cancer.
1998;
79
509-516
- 185
Mori M, Mimori K, Shiraishi T. et al .
Motility related protein 1 (MRP1/CD9) expression in colon cancer.
Clin Cancer Res.
1998;
4
1507-1510
- 186
Rinker-Schaeffer C W, Hawkins A L, Ru N. et al .
Differential suppression of mammary and prostate cancer metastasis by human chromosomes
17 and 11.
Cancer Res.
1994;
54
6249-6256
- 187
Liu W M, Zhang X A.
KAI1/CD82, a tumor metastasis suppressor.
Cancer Lett.
2005;
Oct 28
Epub ahead of print
- 188
Lombardi D P, Geradts J, Foley J F. et al .
Loss of KAI1 expression in the progression of colorectal cancer.
Cancer Res.
1999;
59
5724-5731
- 189
Takaoka A, Hinoda Y, Satoh S. et al .
Suppression of invasive properties of colon cancer cells by a metastasis suppressor
KAI1 gene.
Oncogene.
1998;
16
1443-1453
- 190
Friess H, Guo X Z, Tempia-Caliera A A. et al .
Differential expression of metastasis-associated genes in papilla of Vater and pancreatic
cancer correlates with disease stage.
J Clin Oncol.
2001;
19
2422-2432
- 191
Jackson P, Marreiros A, Russell P J.
KAI1 tetraspanin and metastasis suppressor.
Int J Biochem Cell Biol.
2005;
37
530-534
- 192
Gu J, Tamura M, Pankov R. et al .
Shc and FAK differentially regulate cell motility and directionality modulated by
PTEN.
J Cell Biol.
1999;
146
389-403
- 193
Klemke R L, Leng J, Molander R. et al .
CAS/Crk coupling serves as a “molecular switch” for induction of cell migration.
J Cell Biol.
1998;
140
961-972
- 194
Kolesnikova T V, Stipp C S, Rao R M. et al .
EWI-2 modulates lymphocyte integrin alpha4beta1 functions.
Blood.
2004;
103
3013-3039
- 195
Zhang X A, He B, Zhou B. et al .
Requirement of the p130CAS-Crk coupling for metastasis suppressor KAI1/CD82-mediated
inhibition of cell migration.
J Biol Chem.
2003;
278
27 319-27 328
- 196
Charrin S, Manie S, Thiele C. et al .
A physical and functional link between cholesterol and tetraspanins.
Eur J Immunol.
2003;
33
2479-2489
- 197
Odintsova E, Voortman J, Gilbert E. et al .
Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of
EGFR.
J Cell Sci.
2003;
116
4557-4566
- 198
Sridhar S C, Miranti C K.
Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk
with c-Met receptor and Src kinases.
Oncogene.
2006;
25
2367-2378 Epub ahead of print
- 199
Lee J H, Park S R, Chay K O. et al .
KAI1 COOH-terminal interacting tetraspanin (KITENIN), a member of the tetraspanin
family, interacts with KAI1, a tumor metastasis suppressor, and enhances metastasis
of cancer.
Cancer Res.
2004;
64
4235-4243
- 200
Bass R, Werner F, Odintsova E. et al .
Regulation of urokinase receptor proteolytic function by the tetraspanin CD82.
J Biol Chem.
2005;
280
14 811-14 818
- 201
Geary S M, Cambareri A C, Sincock P M. et al .
Differential tissue expression of epitopes of the tetraspanin CD151 recognised by
monoclonal antibodies.
Tissue Antigens.
2001;
58
141-153
- 202
Tokuhara T, Hasegawa H, Hattori N. et al .
Clinical significance of CD151 gene expression in non-small cell lung cancer.
Clin Cancer Res.
2001;
7
4109-4114
- 203
Gesierich S, Paret C, Hildebrand D. et al .
Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic
adenocarcinoma: impact on cell motility.
Clin Cancer Res.
2005;
11
2840-2852
- 204
Ang J, Lijovic M, Ashman L K. et al .
CD151 protein expression predicts the clinical outcome of low-grade primary prostate
cancer better than histologic grading: a new prognostic indicator?.
Cancer Epidemiol Biomarkers Prev.
2004;
13
1717-1721
- 205
Kohno M, Hasegawa H, Miyake M. et al .
CD151 enhances cell motility and metastasis of cancer cells in the presence of focal
adhesion kinase.
Int J Cancer.
2002;
97
336-343
- 206
Lan R, Liu Z, Song Y. et al .
Effects of rAAV-CD151 and rAAV-antiCD151 on the migration of human tongue squamous
carcinoma cell line Tca8113.
J Huazhong Univ Sci Technolog Med Sci.
2004;
24
556-559
- 207
Shiomi T, Inoki I, Kataoka F. et al .
Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151.
Lab Invest.
2005;
85
1489-1506
- 208
Sugiura T, Berditchevski F.
Function of alpha3beta1-tetraspanin protein complexes in tumor cell invasion. Evidence
for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2).
J Cell Biol.
1999;
146
1375-1389
- 209
Sela B A, Steplewski Z, Koprowski H.
Colon carcinoma-associated glycoproteins recognized by monoclonal antibodies CO-029
and GA22 - 2.
Hybridoma.
1989;
8
481-491
- 210
Huerta S, Harris D M, Jazirehi A. et al .
Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced
apoptosis.
Int J Oncol.
2003;
22
663-670
- 211
Bick R L.
Platelet function defects: a clinical review.
Semin Thromb Hemost.
1992;
18
353-372
- 212
Kanetaka K, Sakamoto M, Yamamoto Y. et al .
Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis
of liver cancer cells.
Gastroenterol Hepatol.
2003;
18
1309-1314
Dr. Margot Zöller
Department of Tumor Progression and Tumor Defense, German Cancer Research Center
Im Neuenheimer Feld 280
69120 Heidelberg
Germany
Telefon: ++49/62 21/42 24 54
Fax: ++49/62 21/43 47 60
eMail: m.zoeller@dkfz.de