Zusammenfassung
Quantitative parametrische Bildgebungsverfahren eröffnen qualitativ neue Perspektiven
für die radiologische Bildgebung. Quantitative 2D-, 3D- und 4D- Darstellungsmöglichkeiten
ergänzen sich mit parametrischen Darstellungen biologischer Gewebeeigenschaften und
-funktionen und damit von Organeigenschaften. Dies ermöglicht die Interpretation radiologischer
Daten aus einer biochemischen, biomechanischen oder physiologischen Perspektive. Durch
die Quantifizierung werden Veränderungen nachweisbar, die visuell noch nicht erkennbar
sind, was Anwendungsmöglichkeiten in der Früherkennung von Erkrankungen und bei einer
empfindlicheren Therapiekontrolle eröffnet. In dieser Übersichtsarbeit werden die
Möglichkeiten, welche die quantitative parametrische Bildgebung bietet, dargestellt
und an beispielhaften Anwendungen erläutert. Ein besonders attraktives Anwendungsfeld,
der Einsatz der Verfahren bei pharmakologischen Zulassungsstudien, wird dargestellt.
Bewertungskriterien zur Qualität quantitativer Bildgebungsverfahren werden im Zusammenhang
mit deren Grenzen und Möglichkeiten aufgeführt. Wenngleich quantitative parametrische
Bildgebungsverfahren die etablierte qualitative Bildinterpretation nicht ersetzen,
sondern ergänzen, so eröffnen sie doch damit potenziell verbesserte Möglichkeiten
in der Diagnostik und Prognostik sowie insbesondere in der Verlaufskontrolle von Erkrankungen
und ihrer Therapien.
Abstract
Quantitative parametric imaging approaches provide new perspectives for radiological
imaging. These include quantitative 2D, 3D, and 4D visualization options along with
the parametric depiction of biological tissue properties and tissue function. This
allows the interpretation of radiological data from a biochemical, biomechanical,
or physiological perspective. Quantification permits the detection of small changes
that are not yet visually apparent, thus allowing application in early disease diagnosis
and monitoring therapy with enhanced sensitivity. This review outlines the potential
of quantitative parametric imaging methods and demonstrates this on the basis of a
few exemplary applications. One field of particular interest, the use of these methods
for investigational new drug application studies, is presented. Assessment criteria
for judging the quality of quantitative imaging approaches are discussed in the context
of the potential and the limitations of these methods. While quantitative parametric
imaging methods do not replace but rather supplement established visual interpretation
methods in radiology, they do open up new perspectives for diagnosis and prognosis
and in particular for monitoring disease progression and therapy.
Key words
Molecular imaging - parametric imaging - functional imaging - therapy monitoring -
early diagnosis - quantitative radiology
Literatur
1
Deoni S C, Rutt B K, Peters T M.
Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady
state.
Magn Reson Med.
2003;
49
515-526
2
Fox N C, Freeborough P A, Rossor M N.
Visualisation and quantification of rates of atrophy in Alzheimer’s disease.
Lancet.
1996;
348
94-97
3
Brix G, Schreiber W, Hoffmann U. et al .
Methodische Ansätze zur quantitativen Beurteilung der Mikrozirkulation im Gewebe mit
der dynamischen Magnetresonanztomographie.
Radiologe.
1997;
37
470-480
4
Schlüter M, Stieltjes B, Hahn H K. et al .
Detection of tumor infiltration in white matter fiber bundles using diffusion tensor
imaging.
Int J Medical Robotics and Computer Assisted Surgery.
2005;
1
80-86
5
Nielsen G, Fritz-Hansen T, Dirks C G. et al .
Evaluation of heart perfusion in patients with acute myocardial infarction using dynamic
contrast-enhanced magnetic resonance imaging.
J Magn Reson Imaging.
2004;
20
403-410
6
Fink C, Risse F, Buhmann R. et al .
Quantitative Analyse der Lungenperfusion mittels zeitaufgelöster paralleler 3D-TRT:
Erste Ergebnisse.
Fortschr Röntgenstr.
2004;
176
170-174
7
Lehmann F, Knitz F, Weiler N. et al .
Ein Auswerteprogramm zur quantitativen Untersuchung der Lungenventilation mittels
dynamischer MRT von hochpolarisiertem 3He.
Fortschr Röntgenstr.
2004;
176
1399-1408
8
Lehmann F, Eberle B, Markstaller K. et al .
Ein Auswerteprogramm zur quantitativen Analyse von Messungen des alveolären Sauerstoffpartialdrucks
(pAO2) mit der sauerstoffsensitiven 3He-MR-Tomographie.
Fortschr Röntgenstr.
2004;
176
1390-1398
9
Knopp M V, von Tengg-Kobligk H, Choyke P L.
Functional magnetic resonance imaging in oncology for diagnosis and therapy monitoring.
Mol Cancer Ther.
2003;
2
419-426
10
Golay X, Hendrikse J, Lim T C.
Perfusion imaging using arterial spin labeling.
Top Magn Reson Imaging.
2004;
15
10-27
11
Logothetis N K, Pfeuffer J.
On the nature of the BOLD fMRI contrast mechanism.
Magn Reson Imaging.
2004;
22
1517-1531
12
Foo S S, Abbott D F, Lawrentschuk N. et al .
Functional imaging of intratumoral hypoxia.
Mol Imaging Biol.
2004;
6
291-305
13
Delbeke D, Martin W H.
Metabolic imaging with FDG: a primer.
Cancer J.
2004;
10
201-213
14
Seddon B M, Workman P.
The role of functional and molecular imaging in cancer drug discovery and development.
Br J Radiol.
2003;
76
S128-138
15
Friston K J, Penny W.
Posterior probability maps and SPMs.
Neuroimage.
2003;
19
1240-1249
16
Lee H Y, Paeng J C, Lee D S. et al .
Efficacy assessment of cerebral arterial bypass surgery using statistical parametric
mapping and probabilistic brain atlas on basal/acetazolamide brain perfusion SPECT.
J Nucl Med.
2004;
45
202-206
17
Berthold L D, Moritz J D, Soenksen S. et al .
Messung der Knochendichte bei Kindern und Jugendlichen mittels quantitativer CT an
nur einem Lendenwirbelkörper.
Fortschr Röntgenstr.
2006;
178
292-297
18
Cummings S R, Bates D, Black D M.
Clinical use of bone densitometry: scientific review.
Jama.
2002;
288
1889-197
19
Khaw K T, Reeve J, Luben R. et al .
Prediction of total and hip fracture risk in men and women by quantitative ultrasound
of the calcaneus: EPIC-Norfolk prospective population study.
Lancet.
2004;
363
197-202
20
van Lenthe G H, van den Bergh J P, Hermus A R. et al .
The prospects of estimating trabecular bone tissue properties from the combination
of ultrasound, dual-energy X-ray absorptiometry, microcomputed tomography, and microfinite
element analysis.
J Bone Miner Res.
2001;
16
550-555
21
Jacobs M A, Ouwerkerk R, Wolff A C. et al .
Multiparametric and multinuclear magnetic resonance imaging of human breast cancer:
current applications.
Technol Cancer Res Treat.
2004;
3
543-550
22
Erasmus J J, Gladish G W, Broemeling L. et al .
Interobserver and intraobserver variability in measurement of non-small-cell carcinoma
lung lesions: implications for assessment of tumor response.
J Clin Oncol.
2003;
21
2574-2582
23
Bornemann L, Kuhnigk J M, Dicken V. et al .
Informatics in radiology (infoRAD): new tools for computer assistance in thoracic
CT part 2. Therapy monitoring of pulmonary metastases.
Radiographics.
2005;
25
841-848
24
Bolte H, Riedel C, Jahnke T. et al .
Reproducibility of computer-aided volumetry of artificial small pulmonary nodules
in ex vivo porcine lungs.
Invest Radiol.
2006;
41
28-35
25
Mayr N A, Taoka T, Yuh W T. et al .
Method and timing of tumor volume measurement for outcome prediction in cervical cancer
using magnetic resonance imaging.
Int J Radiat Oncol Biol Phys.
2002;
52
14-22
26
Bremer C, Mustafa M, Bogdanov A Jr. et al .
Steady-state blood volume measurements in experimental tumors with different angiogenic
burdens a study in mice.
Radiology.
2003;
226
214-220
27
Kerwin W, Hooker A, Spilker M. et al .
Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid
atherosclerotic plaque.
Circulation.
2003;
107
851-856
28
Willett C G, Boucher Y, di Tomaso E. et al .
Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects
in human rectal cancer.
Nat Med.
2004;
10
145-147
29
Brix G, Kiessling F, Lucht R. et al .
Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of
dynamic MR image series.
Magn Reson Med.
2004;
52
420-429
30
Scherer A, Strupp C, Wittsack H J. et al .
Dynamic contrast-enhanced MRI for evaluating bone marrow microcirculation in malignant
hematological diseases before and after thalidomide therapy.
Radiologe.
2002;
42
222-230
31
Maier C F, Paran Y, Bendel P. et al .
Quantitative diffusion imaging in implanted human breast tumors.
Magn Reson Med.
1997;
37
576-581
32
Padhani A R.
MRI for assessing antivascular cancer treatments.
Br J Radiol.
2003;
76
S60-80
33
Detre J A, Samuels O B, Alsop D C. et al .
Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide
challenge in patients with cerebrovascular stenosis.
J Magn Reson Imaging.
1999;
10
870-875
34
Leach M O, Brindle K M, Evelhoch J L. et al .
Assessment of antiangiogenic and antivascular therapeutics using MRI: recommendations
for appropriate methodology for clinical trials.
Br J Radiol.
2003;
76
S87-91
35
Jackson A, Kassner A, Zhu X P. et al .
Reproducibility of T2* blood volume and vascular tortuosity maps in cerebral gliomas.
J Magn Reson Imaging.
2001;
14
510-516
36
Yang M, Baranov E, Li X M. et al .
Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted
tumors.
Proc Natl Acad Sci USA.
2001;
98
2616-2621
37
Winter P M, Morawski A M, Caruthers S D. et al .
Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted
nanoparticles.
Circulation.
2003;
108
2270-2274
38
Schmieder A H, Winter P M, Caruthers S D. et al .
Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic
nanoparticles.
Magn Reson Med.
2005;
53
621-627
39
Dahnke H, Schaeffter T.
Limits of detection of SPIO at 3.0 T using T2 relaxometry.
Magn Reson Med.
2005;
53
1202-1206
40
Selle D, Preim B, Schenk A. et al .
Analysis of vasculature for liver surgical planning.
IEEE Trans Med Imaging.
2002;
21
1344-1357
41
Ravenel J G, McAdams H P, Remy-Jardin M. et al .
Multidimensional imaging of the thorax: practical applications.
J Thorac Imaging.
2001;
16
269-281
42
Bankier A A, De Maertelaer V, Keyzer C. et al .
Pulmonary emphysema: subjective visual grading versus objective quantification with
macroscopic morphometry and thin-section CT densitometry.
Radiology.
1999;
211
851-858
43
Achenbach T, Weinheimer O, Buschsieweke C. et al .
Vollautomatische Detektion und Quantifizierung des Lungenemphysems in Dünnschicht-MD-CT
des Thorax durch eine neue, speziell entwickelte Software.
Fortschr Röntgenstr.
2004;
176
1409-1415
44
Kalender W A, Rienmuller R, Seissler W. et al .
Measurement of pulmonary parenchymal attenuation: use of spirometric gating with quantitative
CT.
Radiology.
1990;
175
265-268
45
Kircher M F, Mahmood U, King R S. et al .
A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative
optical brain tumor delineation.
Cancer Res.
2003;
63
8122-8125
46
De Grand A M, Frangioni J V.
An operational near-infrared fluorescence imaging system prototype for large animal
surgery.
Technol Cancer Res Treat.
2003;
2
553-562
47
Parungo C P, Ohnishi S, De Grand A M. et al .
In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance.
Ann Surg Oncol.
2004;
11
1085-1092
48
Link T M, Vieth V, Stehling C. et al .
High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular
bone structure best?.
Eur Radiol.
2003;
13
663-671
49
Laib A, Beuf O, Issever A. et al .
Direct measures of trabecular bone architecture from MR images.
Adv Exp Med Biol.
2001;
496
37-46
50
Bauer J S, Kohlmann S, Eckstein F. et al .
Structural analysis of trabecular bone of the proximal femur using multislice computed
tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical
strength in vitro.
Calcif Tissue Int.
2006;
78
78-89
51
Link T M, Majumdar S, Lin J C. et al .
A comparative study of trabecular bone properties in the spine and femur using high
resolution MRI and CT.
J Bone Miner Res.
1998;
13
122-132
52
Kang C, Paley M, Ordidge R. et al .
R’2 measured in trabecular bone in vitro: relationship to trabecular separation.
Magn Reson Imaging.
1999;
17
989-995
53
Beuf O, Newitt D C, Mosekilde L. et al .
Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic
resonance imaging and relationship with mechanical competence.
J Bone Miner Res.
2001;
16
1511-1519
54
Wehrli F W, Hopkins J A, Hwang S N. et al .
Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.
Radiology.
2000;
217
527-538
55
Nuzzo S, Peyrin F, Cloetens P. et al .
Quantification of the degree of mineralization of bone in three dimensions using synchrotron
radiation microtomography.
Med Phys.
2002;
29
2672-2681
56
Roschger P, Rinnerthaler S, Yates J. et al .
Alendronate increases degree and uniformity of mineralization in cancellous bone and
decreases the porosity in cortical bone of osteoporotic women.
Bone.
2001;
29
185-191
57
Crawford R P, Keaveny T M.
Relationship between axial and bending behaviors of the human thoracolumbar vertebra.
Spine.
2004;
29
2248-2255
58
Graichen H, von Eisenhart-Rothe R, Vogl T. et al .
Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic
resonance imaging: technical validation for use in analysis of cartilage volume and
further morphologic parameters.
Arthritis Rheum.
2004;
50
811-816
59
Eckstein F, Charles H C, Buck R J. et al .
Accuracy and precision of quantitative assessment of cartilage morphology by magnetic
resonance imaging at 3.0T.
Arthritis Rheum.
2005;
52
3132-3136
60
Eckstein F, Cicuttini F, Raynauld J P. et al .
Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA):
morphological assessment.
Osteoarthritis Cartilage.
2006;
14 Suppl A
A46-A75
61
Cicuttini F M, Wluka A E, Wang Y. et al .
Longitudinal study of changes in tibial and femoral cartilage in knee osteoarthritis.
Arthritis Rheum.
2004;
50
94-97
62
Eckstein F, Lemberger B, Gratzke C. et al .
In vivo cartilage deformation after different types of activity and its dependence
on physical training status.
Ann Rheum Dis.
2005;
64
291-295
63
O’Byrne E, Pellas T, Laurent D.
Qualitative and quantitative in vivo assessment of articular cartilage using magnetic
resonance imaging.
Novartis Found Symp.
2003;
249
190-198; discussion 8 - 202, 34 - 38, 39 - 41
64
Bashir A, Gray M L, Boutin R D. et al .
Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced
MR imaging.
Radiology.
1997;
205
551-558
65
Dardzinski B J, Mosher T J, Li S. et al .
Spatial variation of T2 in human articular cartilage.
Radiology.
1997;
205
546-550
66
Williams A, Gillis A, McKenzie C. et al .
Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced
MRI of cartilage (dGEMRIC): potential clinical applications.
AJR.
2004;
182
167-172
67
Lüsse S, Claassen H, Gehrke T. et al .
Evaluation of water content by spatially resolved transverse relaxation times of human
articular cartilage.
Magn Reson Imaging.
2000;
18
423-430
68
Nieminen M T, Rieppo J, Toyras J. et al .
T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative
quantitative MRI and polarized light microscopic study.
Magn Reson Med.
2001;
46
487-493
69
Liess C, Lusse S, Karger N. et al .
Detection of changes in cartilage water content using MRI T2-mapping in vivo.
Osteoarthritis Cartilage.
2002;
10
907-913
70
Felson D T, Nevitt M C.
Epidemiologic studies for osteoarthritis: new versus conventional study design approaches.
Rheum Dis Clin North Am.
2004;
30
783-797, vii
71
Shah N, Sattar A, Benanti M. et al .
Magnetic resonance spectroscopy as an imaging tool for cancer: a review of the literature.
J Am Osteopath Assoc.
2006;
106
23-27
72
Tatlisumak T, Strbian D, Abo R amadan U. et al .
The role of diffusion- and perfusion-weighted magnetic resonance imaging in drug development
for ischemic stroke: from laboratory to clinics.
Curr Vasc Pharmacol.
2004;
2
343-355
73
Filippi M, Rocca M A, Comi G.
The use of quantitative magnetic-resonance-based techniques to monitor the evolution
of multiple sclerosis.
Lancet Neurol.
2003;
2
337-346
74
Giesel F L, Wustenberg T, Bongers A. et al .
MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems.
Fortschr Röntgenstr.
2005;
177
714-730
75
Gast K K, Heussel C P, Schreiber W G. et al .
Funktionelle Bildgebung der Lunge mit gasförmigem Kontrastmittel: ³Helium-Magnetresonanztomographie.
Fortschr Röntgenstr.
2005;
177
660-669
76
Lorenzen J, Sinkus R, Adam G.
Elastographie: Quantitative Bildgebung der elastischen Gewebeeigenschaften.
Fortschr Röntgenstr.
2003;
175
623-630
77
Borsook D, Becerra L, Hargreaves R.
A role for fMRI in optimizing CNS drug development.
Nat Rev Drug Discov.
2006;
5
411-425
78
Mankoff D A, Shields A F, Krohn K A.
PET imaging of cellular proliferation.
Radiol Clin North Am.
2005;
43
153-167
79
Weber W A.
Use of PET for monitoring cancer therapy and for predicting outcome.
J Nucl Med.
2005;
46
983-995
80
Nekolla S G.
Dynamic and gated PET: quantitative imaging of the heart revisited.
Nuklearmedizin.
2005;
44
S41-45
81
Musch G, Venegas J G.
Positron emission tomography imaging of regional pulmonary perfusion and ventilation.
Proc Am Thorac Soc.
2005;
2
522-527, 08 - 09
82
Wang Y X.
Medical imaging in pharmaceutical clinical trials: what radiologists should know.
Clin Radiol.
2005;
60
1051-1057
83
Delorme S, Krix M, Albrecht T.
Ultraschallkontrastmittel - Grundlagen und klinische Anwendung.
Fortschr Röntgenstr.
2006;
178
155-164
84
Lemke A J, Chopra S S, Hengst S A. et al .
Charakterisierung von Lebertumoren durch kontrastverstärkte Sonographie und digitale
Graustufenbestimmung.
Fortschr Röntgenstr.
2004;
176
1607-1616
85
Bauer J S, Issever A S, Fischbeck M. et al .
Charakterisierung von Lebertumoren durch kontrastverstärkte Sonographie und digitale
Graustufenbestimmung.
Fortschr Röntgenstr.
2004;
176
709-718
86
Mohr A, Barkmann R, Mohr C. et al .
Quantitativer Ultraschall zur Osteoporosediagnostik.
Fortschr Röntgenstr.
2004;
176
610-617
87
Leary S M, Miller D H, Stevenson V L. et al .
Interferon beta-1a in primary progressive MS: an exploratory, randomized, controlled
trial.
Neurology.
2003;
60
44-51
88
Rexilius J, Hahn H K, Schluter M. et al .
Evaluation of accuracy in MS lesion volumetry using realistic lesion phantoms.
Acad Radiol.
2005;
12
17-24
89
Hahn H K, Jolly B, Lee M. et al .
How accurate is brain volumetry?.
Lecture notes in computer science.
2004;
3216
335-342
90
Glüer C C, Blake G, Lu Y. et al .
Accurate assessment of precision errors: how to measure the reproducibility of bone
densitometry techniques.
Osteoporos Int.
1995;
5
262-270
91
Metz C E, Herman B A, Roe C A.
Statistical comparison of two ROC-curve estimates obtained from partially-paired datasets.
Med Decis Making.
1998;
18
110-121
92
Glüer C C.
Monitoring skeletal changes by radiological techniques.
J Bone Miner Res.
1999;
14
1952-1962
93 Hulley S B, Cummings S R, Browner W S. et al .Designing Clinical Research. 2nd ed. Philadelphia; Lippincott Williams & Wilkins 2001
94
Kalender W A, Felsenberg D, Genant H K. et al .
The European Spine Phantom - a tool for standardization and quality control in spinal
bone mineral measurements by DXA and QCT.
Eur J Radiol.
1995;
20
83-92
95
Cummings S R, Parfitt A M.
Bone density regression to the mean and the individual patient.
J Clin Endocrinol Metab.
2001;
86
4001-4002
96
Ren H, Shen Q, Bardutzky J. et al .
Partial-volume effect on ischemic tissue-fate delineation using quantitative perfusion
and diffusion imaging on a rat stroke model.
Magn Reson Med.
2004;
52
1328-1335
97
Crum W R, Hartkens T, Hill D L.
Non-rigid image registration: theory and practice.
Br J Radiol.
2004;
77
S140-153
98
Fischer B, Modersitzki J.
Intensity-based image registration with a guaranteed one-to-one point match.
Methods Inf Med.
2004;
43
327-330
Prof. Claus-Christian Glüer
Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein
Michaelisstr. 9
24105 Kiel
Phone: ++49/4 31/5 97 31 57
Fax: ++49/4 31/5 97 31 27
Email: glueer@rad.uni-kiel.de