TumorDiagnostik & Therapie 2006; 27(6): 259-265
DOI: 10.1055/s-2006-927319
Übersicht

© Georg Thieme Verlag Stuttgart · New York

Konsensusempfehlungen zu methodischen Aspekten und zur klinischen Relevanz des Nachweises disseminierter Tumorzellen (DTZ) im Knochenmark (KM) von Patientinnen mit primärem Mammakarzinom

Ergebnisse des Konsensustreffens im Rahmen der Dreiländertagung Senologie, Stuttgart, September 2005Consensus Statements for the Detection and Clinical Implementation of Disseminated Tumor Cells in Bone Marrow of Primary Breast Cancer PatientsT. Fehm1, [*] , V. Müller2, [*] , W. Janni3, [*] , S. Braun4, [*] , G. Gebauer5, [*] , C. Marth4, [*] , C. Schindlbeck3, [*] , D. Wallwiener1, [*] , E. Borgen6, [**] , K. Pantel7, [*, ] [**] , E. Solomayer1, [*]
  • 1Universitätsfrauenklinik Tübingen, Tübingen
  • 2Universitätsfrauenklinik Hamburg, Hamburg
  • 3Universitätsfrauenklinik LMU, München
  • 4Universitätsfrauenklinik Innsbruck, Innsbruck
  • 5Universitätsfrauenklinik Heidelberg, Heidelberg
  • 6Institut für Pathologie, Radium Hospital, Oslo, Norwegen
  • 7Institut für Tumorbiologie, Hamburg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. Dezember 2006 (online)

Zusammenfassung

Das Gebiet der Tumorzelldissemination beim Mammakarzinom hatte in den letzten Jahren immer mehr an Bedeutung gewonnen. Durch den Nachweis disseminierter Tumorzellen im Knochenmark und Blut wurde bewiesen, dass das Mammakarzinom prinzipiell eine systemische Erkrankung ist. Die Daten der Pooled Analysis der Collaborative Bone Marrow Micrometastasis Group bestätigten den Tumorzellnachweis im Knochenmark als unabhängigen prognostischen Marker. Darüber hinaus ist die Prognose der Frauen mit Tumorzellpersistenz nach adjuvanter systemischer Therapie im Vergleich zu den Patientinnen ohne Tumorzellnachweis deutlich schlechter. In zukünftigen Studien müssen nun Therapieansätze evaluiert werden, die die Eliminierung disseminierte Tumorzellen zum Ziel haben. Eine entscheidende Vorraussetzung für die Durchführung von solchen (Multizenter-)studien ist, dass ein standardisiertes Vorgehen zum Nachweis von disseminierten Tumorzellen im Knochenmark definiert wird. Im Rahmen der Dreiländertagung der Gesellschaften für Senologie traf sich daher ein internationales Expertenpanel aus Deutschland, der Schweiz und aus Österreich, um die bestehenden Methoden zum Tumorzellnachweis im Knochenmark zu evaluieren sowie einen Konsensus für den standardisierten Nachweis sowie die klinische Implementierung festzulegen.

Abstract

Presence of disseminated tumor cells in blood and bone marrow (BM) has confirmed the hypothesis of breast cancer as a systemic disease. Disseminated tumor cells (DTC) are already present in 20 - 40 % of primary breast cancer patients without clinical evidence of metastatic disease. A large pooled analysis has recently shown that the presence of disseminated tumor cells in the bone marrow (BM) of primary breast cancer patients (stages I-III) is associated with poor prognosis. Moreover, tumor cell persistence after completion of adjuvant therapy identifies patients at a high risk for recurrence. To date, sampling of BM and assessment of DTC is not considered a routine procedure in the clinical management of breast cancer patients but emerging data suggests a future role for risk stratification and monitoring of therapeutic efficacy. Since these clinical options need to be evaluated in clinical trials, agreement on the standardized detection of DTC is mandatory. Therefore, the German, Austrian and Swiss Societies for Senology recently initiated an international consensus meeting 1) to define a consensus for the standardized detection of DTC and to explore the options for its clinical implementation.

Literatur

  • 1 Coombes R C, Berger U, Mansi J. et al . Prognostic significance of micrometastases in bone marrow in patients with primary breast cancer.  NCI. 1986;  1 51-53
  • 2 Solomayer E F, Diel I J, Salanti G, Hahn M. et al . Time independence of the prognostic impact of tumor cell detection in the bone marrow of primary breast cancer patients.  Clin Cancer Res. 2001;  7 4102-4108
  • 3 Porro G, Menard S, Tagliabue E. et al . Monoclonal antibody detection of carcinoma cells in bone marrow biopsy specimens from breast cancer patients.  Cancer. 1988;  61 2407-2411
  • 4 Salvadori B, Squicciarini P, Rovini D. et al . Use of monoclonal antibody MBr1 to detect micrometastases in bone marrow specimens of breast cancer patients.  Eur J Cancer. 1990;  26 865-867
  • 5 Mathieu M C, Friedman S, Bosq J. et al . Immunohistochemical staining of bone marrow biopsies for detection of occult metastasis in breast cancer.  Breast Cancer Res Treat. 1990;  15 21-26
  • 6 Dearnaley D P, Ormerod M G, Sloane J P. Micrometastases in breast cancer: long-term follow-up of the first patient cohort.  Eur J Cancer. 1991;  27 236-239
  • 7 Cote R J, Rosen P P, Lesser M L, Old L J, Osborne M P. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases.  J Clin Oncol. 1991;  9 1749-1756
  • 8 Wiedswang G, Borgen E, Karesen R. et al . Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer.  J Clin Oncol. 2003;  21 3469-3478
  • 9 Harbeck N, Untch M, Pache L, Eiermann W. Tumor cell detection in the bone marrow of breast cancer patients at primary therapy: Results of a 3-year median follow-up.  Br J Cancer. 1994;  69 566-571
  • 10 Diel I J, Kaufmann M, Costa S D. et al . Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status.  J Natl Cancer Inst. 1998;  90 1099-1101
  • 11 Funke I, Fries S, Rolle M. et al . Comparative analyses of bone marrow micrometastases in breast and gastric cancer.  Int J Cancer. 1996;  65 755-761
  • 12 Mansi J L, Gogas H, Bliss J M, Gazet J C, Berger U, Coombes R C. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study.  Lancet. 1999;  354 197-202
  • 13 Braun S, Pantel K, Muller P. et al . Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer.  N Engl J Med. 2000;  342 525-533
  • 14 Gerber B, Krause A, Muller H. et al . Simultaneous immunohistochemical detection of tumor cells in lymph nodes and bone marrow aspirates in breast cancer and its correlation with other prognostic factors.  J Clin Oncol. 2001;  19 960-971
  • 15 Gebauer G, Fehm T, Merkle E. et al . Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up.  J Clin Oncol. 2001;  19 3669-3674
  • 16 Pantel K, Brakenhoff R H. Dissecting the metastatic cascade.  Nat Rev Cancer. 2004;  4 448-456
  • 17 Braun S, Vogl F D, Naume B. et al . A pooled analysis of bone marrow micrometastasis in breast cancer.  N Engl J Med. 2005;  353 793-802
  • 18 Wiedswang G, Borgen E, Karesen R. et al . Isolated tumor cells in bone marrow three years after diagnosis in disease-free breast cancer patients predict unfavorable clinical outcome.  Clin Cancer Res. 2004;  10 5342-5348
  • 19 Braun S, Kentenich C, Janni W. et al . Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients.  J Clin Oncol. 2000;  18 80-86
  • 20 Janni W, Rack B, Schindlbeck C. et al . The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence.  Cancer. 2005;  103 884-891
  • 21 Janni W, Hepp F, Rjosk D. et al . The fate and prognostic value of occult metastatic cells in the bone marrow of patients with breast carcinoma between primary treatment and recurrence.  Cancer. 2001;  92 46-53
  • 22 Naume B, Borgen E, Kvalheim G. et al . Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: Comparison with preoperative clinical parameters and primary tumor characteristics.  Clin Cancer Res. 2001;  7 4122-4129
  • 23 Bauer K D, Torre-Bueno J de la, Diel I J. et al . Reliable and sensitive analysis of occult bone marrow metastases using automated cellular imaging.  Clin Cancer Res. 2000;  6 3552-3559
  • 24 Wiedswang G, Borgen E, Karesen R, Naume B. Detection of isolated tumor cells in BM from breast-cancer patients: significance of anterior and posterior iliac crest aspirations and the number of mononuclear cells analyzed.  Cytotherapy. 2003;  5 40-45
  • 25 Borgen E, Naume B, Nesland J M. et al . Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells: The European ISHAGE Working Group for Standardization of Tumor Cell Detection.  Cytotherapy. 1999;  5 377-388
  • 26 Pierga J Y, Bonneton C, Vincent-Salomon A. et al . Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients.  Clin Cancer Res. 2004;  10 1392-1400
  • 27 Choesmel V, Anract P, Hoifodt H, Thiery J P, Blin N. A relevant immunomagnetic assay to detect and characterize epithelial cell adhesion molecule-positive cells in bone marrow from patients with breast carcinoma: immunomagnetic purification of micrometastases.  Cancer. 2004;  101 693-703
  • 28 Kraeft S K, Sutherland R, Gravelin L. et al . Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system.  Clin Cancer Res. 2000;  6 434-442
  • 29 Naume B, Nesland J M. et al . Use of automated microscopy for the detection of disseminated tumor cells in bone marrow samples.  Cytometry. 2001;  46 215-221
  • 30 Fehm T, Becker S, Pergola-Becker G. et al . Influence of tumor biological factors on tumor cell dissemination in primary breast cancer.  Anticancer Res. 2004;  24 4211-4216
  • 31 Pantel K, Schlimok G, Angstwurm M. et al . Methodological analysis of immunocytochemical screening for disseminated epithelial tumor cells in bone marrow.  J Hematother. 1994;  3 165-173
  • 32 Schlimok G, Funke I, Holzmann B. et al . Micrometastatic cancer cells in bone marrow: in vitro detection with anti-cytokeratin and in vivo labeling with anti-17-1A monoclonal antibodies.  Proc Natl Acad Sci USA. 1987;  84 8672-8676
  • 33 Thor A, Viglione M J, Ohuchi N. et al . Comparison of monoclonal antibodies for the detection of occult breast carcinoma metastases in bone marrow.  Breast Cancer Res Treat. 1988;  11 133-145
  • 34 Becker S, Becker-Pergola G, Fehm T, Emig R, Wallwiener D, Solomayer E F. Image analysis systems for the detection of disseminated breast cancer cells on bone-marrow cytospins.  J Clin Lab Anal. 2005;  19 115-119
  • 35 Naume B, Wiedswang G, Borgen E. et al . The prognostic value of isolated tumor cells in bone marrow in breast cancer patients: evaluation of morphological categories and the number of clinically significant cells.  Clin Cancer Res. 2004;  10 3091-3097
  • 36 Schmidt-Kittler O, Ragg T, Daskalakis A. et al . From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression.  Proc Natl Acad Sci. 2003;  100 7737-7742
  • 37 Gangnus R, Langer S, Breit E, Pantel K, Speicher M R. Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients.  Clin Cancer Res. 2004;  10 3457-3464
  • 38 Klein C A, Blankenstein T J, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein N H, Riethmuller G. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer.  Lancet. 2002;  360 683-689
  • 39 Fehm T, Sagalowsky A, Clifford E. et al . Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant.  Clin Cancer Res. 2002;  8 2073-2084
  • 40 Schardt J A, Meyer M, Hartmann C H. et al . Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer.  Cancer Cell. 2005;  8 227-239
  • 41 Wong G YC, Yu Q Q, Osborne M P. Bone marrow micrometastasis is a significant predictor of long-term relapse-free survival for breast cancer by a non-proportional hazards model.  Breast Cancer Res Treat. 2003;  82 99
  • 42 Pantel K, Schlimok G, Braun S. et al . Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells.  J Natl Cancer Inst. 1993;  85 1419-1424
  • 43 Meng S, Tripathy D, Frenkel E P. et al . Circulating tumor cells in patients with breast cancer dormancy.  Clin Cancer Res. 2004;  10 8152-8162
  • 44 Braun S, Hepp F, Kentenich C R. et al . Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow.  Clin Cancer Res. 1999;  5 3999-4004
  • 45 Kirchner E M, Gerhards R, Voigtmann R. et al . Sequential immunochemotherapy and edrecolomab in the adjuvant therapy of breast cancer: reduction of 17-1A-positive disseminated tumour cells.  Ann Oncol. 2002;  7 1044-1048
  • 46 Braun S, Naume J. Circulating and disseminated tumor cells.  Clin Oncol. 2005;  23 1623-1626
  • 47 Wiedswang G, Borgen E, Schirmer C, Karesen R, Kvalheim G, Nesland J M, Naume B. Comparison of the clinical significance of occult tumor cells in blood and bone marrow in breast cancer. Int J Cancer, in press
  • 48 Muller V, Stahmann N, Riethdorf S. et al . Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity.  Clin Cancer Res. 2005;  11 3678-3685
  • 49 Cristofanilli M, Budd G T, Ellis M J. et al . Circulating tumor cells, disease progression, and survival in metastatic breast cancer.  N Engl J Med. 2004;  351 781-791

1 stellvertetend für die Kommission Tumorzelldissemination der Senologie

2 stellvertretend für DISMAL (Disseminated Malignancies) Projekt Konsortium (unterstützt durch das European Community's Framework programme, LSHC-CT-2005-018911)

PD Dr. T. Fehm

Universitätsfrauenklinik Tübingen

Calwerstraße 7

72076 Tübingen

Telefon: 070 71/2 98 22 11

Fax: 070 71/29 52 86

eMail: tanja.fehm@t-online.de

    >