Z Gastroenterol 2007; 45(1): 25-33
DOI: 10.1055/s-2006-927388
Übersicht

© Karl Demeter Verlag im Georg Thieme Verlag KG Stuttgart · New York

Mechanisms of Fibrolysis in Chronic Liver Injury (with Special Emphasis on MMPs and TIMPs)

Fibrolysemechanismen bei chronischen Lebererkrankungen (unter besonderer Berücksichtigung von MMPs und TIMPs)M. Roderfeld1, 2 , S. Hemmann1, 2 , E. Roeb1
  • 1University Hospital Giessen & Marburg GmbH, Department of Medicine II, Gastroenterology, Giessen, Germany
  • 2These authors contributed equally to this review.
Weitere Informationen

Publikationsverlauf

manuscript received: 6.10.2006

manuscript accepted: 15.12.2006

Publikationsdatum:
19. Januar 2007 (online)

Zusammenfassung

Die Regeneration der fibrotischen Leber ist durch vier Mechanismen charakterisiert: 1. Aussetzen des schädigenden Agens, 2. Apoptose aktivierter hepatischer Sternzellen, 3. Umbau der extrazellulären Matrix und 4. Regeneration des Parenchyms und damit: Wiederherstellung normaler Leberfunktionen. Für den Umbau der extrazellulären Matrix ist die zeitlich und räumlich abgestimmte Regulation der proteolytischen Aktivität der Matrix-Metalloproteinasen (MMPs) und die Expression ihrer spezifischen Inhibitoren, der Tissue Inhibitors of Metalloproteinases (TIMPs) essenziell. Aktuelle Erkenntnisse über Mechanismen der hepatischen Fibrolyse mit dem Schwerpunkt „MMPs und TIMPs” werden diskutiert. Die Expressionsmuster von MMPs und TIMPs während der hepatischen Fibrogenese und Fibrolyse, Gen- und Proteinregulation, an der Expression beteiligte Zelltypen und bisher untersuchte Krankheitsbilder und Modelle werden kritisch beleuchtet. Insbesondere Studien, die einen zeitlichen Verlauf der Expression von MMPs und TIMPs während der Fibrogenese beschreiben, wurden analysiert, um Homologien im Expressionsmuster der beteiligten Faktoren herauszustellen.

Abstract

Regeneration from liver fibrosis is characterized by four essential events: 1. eradication of pathological agents, 2. apoptosis of activated hepatic stellate cells, 3. remodeling of extracellular matrix, and 4. regeneration of parenchyma and liver function. The temporal and spatial regulation of matrix metalloproteinase (MMP) activity and expression of their specific inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), play a pivotal role in matrix remodeling during hepatic fibrogenesis and recovery. According to current knowledge, the main topics and mechanisms in regeneration from hepatic fibrosis with special emphasis on MMPs and TIMPs are presented. MMP and TIMP expression patterns during hepatic fibrogenesis and fibrolysis, specific characteristics like regulation, expression of cell types, gene expression (RNA/protein), and the underlying disease are summarized. Studies presenting a time course for MMP and TIMP expression during recovery from hepatic fibrosis were taken into consideration to point out a synchronizing behavior in the expression pattern.

References

  • 1 Friedman S L. Liver fibrosis - from bench to bedside.  J Hepatol. 2003;  38 (Suppl 1) 38-53
  • 2 Friedman S L, Bansal M B. Reversal of hepatic fibrosis - fact or fantasy?.  Hepatology. 2006;  43 82-88
  • 3 Fattovich G, Stroffolini T, Zagni I. et al . Hepatocellular carcinoma in cirrhosis: incidence and risk factors.  Gastroenterology. 2004;  127 S35-S50
  • 4 Iredale J P. Hepatic stellate cell behavior during resolution of liver injury.  Semin Liver Dis. 2001;  21 427-436
  • 5 Friedman S L. Cytokines and fibrogenesis.  Semin Liver Dis. 1999;  19 129-140
  • 6 Svegliati-Baroni G, Saccomanno S, Goor H van. et al . Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells.  Liver. 2001;  21 1-12
  • 7 Cassiman D, Libbrecht L, Desmet V. et al . Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.  J Hepatol. 2002;  36 200-209
  • 8 Issa R, Zhou X, Constandinou C M. et al . Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking.  Gastroenterology. 2004;  126 1795-1808
  • 9 Watanabe T, Niioka M, Hozawa S. et al . Gene expression of interstitial collagenase in both progressive and recovery phase of rat liver fibrosis induced by carbon tetrachloride.  J Hepatol. 2000;  33 224-235
  • 10 Schuppan D, Ruehl M, Somasundaram R. et al . Matrix as a modulator of hepatic fibrogenesis.  Semin Liver Dis. 2001;  21 351-372
  • 11 Martinez-Hernandez A, Amenta P S. The extracellular matrix in hepatic regeneration.  FASEB J. 1995;  9 1401-1410
  • 12 Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver.  Lab Invest. 1984;  51 57-74
  • 13 Martinez-Hernandez A. The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4-induced cirrhosis.  Lab Invest. 1985;  53 166-186
  • 14 Friedman S L, Roll F J, Boyles J. et al . Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix.  J Biol Chem. 1989;  264 10 756-10 762
  • 15 McGuire R F, Bissell D M, Boyles J. et al . Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver.  Hepatology. 1992;  15 989-997
  • 16 Bhunchet E, Fujieda K. Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis: a mechanism to maintain liver blood flow.  Hepatology. 1993;  18 1450-1458
  • 17 Corpechot C, Barbu V, Wendum D. et al . Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis.  Hepatology. 2002;  35 1010-1021
  • 18 Treiber G, Csepregi A, Malfertheiner P. The pathophysiology of portal hypertension.  Dig Dis. 2005;  23 6-10
  • 19 Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells.  Semin Liver Dis. 2001;  21 373-384
  • 20 Dienstag J L, Goldin R D, Heathcote E J. et al . Histological outcome during long-term lamivudine therapy.  Gastroenterology. 2003;  124 105-117
  • 21 Falize L, Guillygomarc’h A, Perrin M. et al . Reversibility of hepatic fibrosis in treated genetic hemochromatosis: A study of 36 cases.  Hepatology. 2006;  44 472-477
  • 22 Hammel P, Couvelard A, O’Toole D. et al . Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct.  N Engl J Med. 2001;  344 418-423
  • 23 Issa R, Williams E, Trim N. et al . Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors.  Gut. 2001;  48 548-557
  • 24 Wanless I R, Nakashima E, Sherman M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis.  Arch Pathol Lab Med. 2000;  124 1599-1607
  • 25 Issa R, Zhou X, Trim N. et al . Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration.  FASEB J. 2003;  17 47-49
  • 26 Takahara Y, Takahashi M, Wagatsuma H. et al . Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis.  World J Gastroenterol. 2006;  12 6473-6499
  • 27 Watabiki T, Okii Y, Tokiyasu T. et al . Long-term ethanol consumption in ICR mice causes mammary tumor in females and liver fibrosis in males.  Alcohol Clin Exp Res. 2000;  24 117S-122S
  • 28 Honda H, Ikejima K, Hirose M. et al . Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver.  Hepatology. 2002;  36 12-21
  • 29 Kornek M, Raskopf E, Guetgemann I. et al . Combination of systemic thioacetamide (TAA) injections and ethanol feeding accelerates hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation of MMP-2, VEGF and ICAM-1.  J Hepatol. 2006;  45 370-376
  • 30 Arias M, Sauer-Lehnen S, Treptau J. et al . Adenoviral expression of a transforming growth factor-beta1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats.  BMC Gastroenterol. 2003;  3 29
  • 31 Henkel C, Roderfeld M, Weiskirchen R. et al . Changes of the hepatic proteome in murine models for toxically induced fibrogenesis and sclerosing cholangitis.  Proteomics. 2006;  6 6538-6548
  • 32 Ueberham E, Low R, Ueberham U. et al . Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis.  Hepatology. 2003;  37 1067-1078
  • 33 Benyon R C, Iredale J P. Is liver fibrosis reversible?.  Gut. 2000;  46 443-446
  • 34 Rockey D C. Antifibrotic therapy in chronic liver disease.  Clin Gastroenterol Hepatol. 2005;  3 95-107
  • 35 Elsharkawy A M, Oakley F, Mann D A. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis.  Apoptosis. 2005;  10 927-939
  • 36 Iredale J P, Benyon R C, Pickering J. et al . Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors.  J Clin Invest. 1998;  102 538-549
  • 37 Kossakowska A E, Edwards D R, Lee S S. et al . Altered balance between matrix metalloproteinases and their inhibitors in experimental biliary fibrosis.  Am J Pathol. 1998;  153 1895-1902
  • 38 Okazaki I, Watanabe T, Hozawa S. et al . Molecular mechanism of the reversibility of hepatic fibrosis: with special reference to the role of matrix metalloproteinases.  J Gastroenterol Hepatol. 2000;  15 (Suppl) 26-32
  • 39 Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.  Hepatology. 2004;  39 1477-1487
  • 40 Brau N. Update on chronic hepatitis C in HIV/HCV-coinfected patients: viral interactions and therapy.  AIDS. 2003;  17 2279-2290
  • 41 Brau N, Salvatore M, Rios-Bedoya C F. et al . Slower fibrosis progression in HIV/HCV-coinfected patients with successful HIV suppression using antiretroviral therapy.  J Hepatol. 2006;  44 47-55
  • 42 Petersen-Benz C, Kasper H U, Dries V. et al . Differential efficacy of corticosteroids and interferon in a patient with chronic hepatitis C-autoimmune hepatitis overlap syndrome.  Clin Gastroenterol Hepatol. 2004;  2 440-443
  • 43 Pokrovskii V I, Nepomnyashchikh G I, Tolokonskaya N P. Chronic hepatitis C: modern notions of pathogenesis and morphogenesis. Concept of antiviral protection in hepatocytes.  Bull Exp Biol Med. 2003;  135 311-321
  • 44 Pol S, Carnot F, Nalpas B. et al . Reversibility of hepatitis C virus-related cirrhosis.  Hum Pathol. 2004;  35 107-112
  • 45 Ramalho F. Hepatitis C virus infection and liver steatosis.  Antiviral Res. 2003;  60 125-127
  • 46 Dufour J F, DeLellis R, Kaplan M M. Reversibility of hepatic fibrosis in autoimmune hepatitis.  Ann Intern Med. 1997;  127 981-985
  • 47 Dufour J F, DeLellis R, Kaplan M M. Regression of hepatic fibrosis in hepatitis C with long-term interferon treatment.  Dig Dis Sci. 1998;  43 2573-2576
  • 48 Kaplan M M, DeLellis R A, Wolfe H J. Sustained biochemical and histologic remission of primary biliary cirrhosis in response to medical treatment.  Ann Intern Med. 1997;  126 682-688
  • 49 Lau D T, Kleiner D E, Park Y. et al . Resolution of chronic delta hepatitis after 12 years of interferon alfa therapy.  Gastroenterology. 1999;  117 1229-1233
  • 50 Poynard T, McHutchison J, Davis G L. et al . Impact of interferon alfa-2b and ribavirin on progression of liver fibrosis in patients with chronic hepatitis C.  Hepatology. 2000;  32 1131-1137
  • 51 Wakim-Fleming J, Mullen K D. Long-term management of alcoholic liver disease.  Clin Liver Dis. 2005;  9 135-149
  • 52 Iredale J P, Benyon R C, Pickering J. et al . Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors.  J Clin Invest. 1998;  102 538-549
  • 53 Canbay A, Friedman S, Gores G J. Apoptosis: the nexus of liver injury and fibrosis.  Hepatology. 2004;  39 273-278
  • 54 Roderfeld M, Weiskirchen R, Wagner S. et al . Inhibition of hepatic fibrogenesis by matrix metalloproteinase-9 mutants in mice.  FASEB J. 2006;  20 444-454
  • 55 Wright M C, Issa R, Smart D E. et al . Gliotoxin stimulates the apoptosis of human and rat hepatic stellate cells and enhances the resolution of liver fibrosis in rats.  Gastroenterology. 2001;  121 685-698
  • 56 Murphy F R, Issa R, Zhou X. et al . Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis.  J Biol Chem. 2002;  277 11 069-11 076
  • 57 Yoshiji H, Kuriyama S, Yoshii J. et al . Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse.  Hepatology. 2002;  36 850-860
  • 58 Roskams T, Cassiman D, VR. et al . Neuroregulation of the neuroendocrine compartment of the liver.  Anat Rec A Discov Mol Cell Evol Biol. 2004;  280 910-923
  • 59 Lemaitre V, D’Armiento J. Matrix metalloproteinases in development and disease.  Birth Defects Res C Embryo Today. 2006;  78 1-10
  • 60 Iredale J P. Tissue inhibitors of metalloproteinases in liver fibrosis.  Int J Biochem Cell Biol. 1997;  29 43-54
  • 61 Okazaki I, Maruyama K. Collagenase activity in experimental hepatic fibrosis.  Nature. 1974;  252 49-50
  • 62 Carter E A, McCarron M J, Alpert E. et al . Lysyl oxidase and collagenase in experimental acute and chronic liver injury.  Gastroenterology. 1982;  82 526-534
  • 63 Maruyama K, Okazaki I, Kashiwazaki K. et al . Different appearance of hepatic collagenase and lysosomal enzymes in recovery of experimental hepatic fibrosis.  Biochem Exp Biol. 1978;  14 191-201
  • 64 Arendt E, Ueberham U, Bittner R. et al . Enhanced matrix degradation after withdrawal of TGF-beta1 triggers hepatocytes from apoptosis to proliferation and regeneration.  Cell Prolif. 2005;  38 287-299
  • 65 Takahara T, Furui K, Funaki J. et al . Increased expression of matrix metalloproteinase-II in experimental liver fibrosis in rats.  Hepatology. 1995;  21 787-795
  • 66 Watanabe T, Niioka M, Ishikawa A. et al . Dynamic change of cells expressing MMP-2 mRNA and MT1-MMP mRNA in the recovery from liver fibrosis in the rat.  J Hepatol. 2001;  35 465-473
  • 67 Zhou X, Hovell C J, Pawley S. et al . Expression of matrix metalloproteinase-2 and -14 persists during early resolution of experimental liver fibrosis and might contribute to fibrolysis.  Liver Int. 2004;  24 492-501
  • 68 Harty M W, Huddleston H M, Papa E F. et al . Repair after cholestatic liver injury correlates with neutrophil infiltration and matrix metalloproteinase 8 activity.  Surgery. 2005;  138 313-320
  • 69 Lichtinghagen R, Bahr M J, Wehmeier M. et al . Expression and coordinated regulation of matrix metalloproteinases in chronic hepatitis C and hepatitis C virus-induced liver cirrhosis.  Clin Sci (Lond). 2003;  105 373-382
  • 70 Knauper V, Lopez-Otin C, Smith B. et al . Biochemical characterization of human collagenase-3.  J Biol Chem. 1996;  271 1544-1550
  • 71 Yata Y, Takahara T, Furui K. et al . Expression of matrix metalloproteinase-13 and tissue inhibitor of metalloproteinase-1 in acute liver injury.  J Hepatol. 1999;  30 419-424
  • 72 Iimuro Y, Nishio T, Morimoto T. et al . Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat.  Gastroenterology. 2003;  124 445-458
  • 73 D’Armiento J, DiColandrea T, Dalal S S. et al . Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis.  Mol Cell Biol. 1995;  15 5732-5739
  • 74 Aimes R T, Quigley J P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments.  J Biol Chem. 1995;  270 5872-5876
  • 75 Kerkvliet E H, Docherty A J, Beertsen W. et al . Collagen breakdown in soft connective tissue explants is associated with the level of active gelatinase A (MMP-2) but not with collagenase.  Matrix Biol. 1999;  18 373-380
  • 76 Ohuchi E, Imai K, Fujii Y. et al . Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules.  J Biol Chem. 1997;  272 2446-2451
  • 77 Holmbeck K, Bianco P, Caterina J. et al . MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover.  Cell. 1999;  99 81-92
  • 78 Preaux A M, D’ortho M P, Bralet M P. et al . Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2.  Hepatology. 2002;  36 615-622
  • 79 Siller-Lopez F, Sandoval A, Salgado S. et al . Treatment with human metalloproteinase-8 gene delivery ameliorates experimental rat liver cirrhosis.  Gastroenterology. 2004;  126 1122-1133
  • 80 Roeb E, Graeve L, Hoffmann R. et al . Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures.  Hepatology. 1993;  18 1437-1442
  • 81 Roderfeld M, Geier A, Dietrich C G. et al . Cytokine blockade inhibits hepatic tissue inhibitor of metalloproteinase-1 expression and up-regulates matrix metalloproteinase-9 in toxic liver injury.  Liver Int. 2006;  26 579-586
  • 82 Roeb E, Purucker E, Breuer B. et al . TIMP expression in toxic and cholestatic liver injury in rat.  J Hepatol. 1997;  27 535-544
  • 83 Herbst H, Wege T, Milani S. et al . Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis.  Am J Pathol. 1997;  150 1647-1659
  • 84 Iredale J P, Benyon R C, Arthur M J. et al . Tissue inhibitor of metalloproteinase-1 messenger RNA expression is enhanced relative to interstitial collagenase messenger RNA in experimental liver injury and fibrosis.  Hepatology. 1996;  24 176-184
  • 85 Parsons C J, Bradford B U, Pan C Q. et al . Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats.  Hepatology. 2004;  40 1106-1115
  • 86 Nie Q H, Cheng Y Q, Xie Y M. et al . Inhibiting effect of antisense oligonucleotides phosphorthioate on gene expression of TIMP-1 in rat liver fibrosis.  World J Gastroenterol. 2001;  7 363-369
  • 87 Ding Y, Uitto V J, Haapasalo M. et al . Membrane components of Treponema denticola trigger proteinase release from human polymorphonuclear leukocytes.  J Dent Res. 1996;  75 1986-1993
  • 88 Wiemann S U, Satyanarayana A, Tsahuridu M. et al . Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis.  FASEB J. 2002;  16 935-942
  • 89 Gordon G J, Coleman W B, Grisham J W. Temporal analysis of hepatocyte differentiation by small hepatocyte-like progenitor cells during liver regeneration in retrorsine-exposed rats.  Am J Pathol. 2000;  157 771-786
  • 90 Takahara T, Furui K, Yata Y. et al . Dual expression of matrix metalloproteinase-2 and membrane-type 1-matrix metalloproteinase in fibrotic human livers.  Hepatology. 1997;  26 1521-1529
  • 91 Lichtinghagen R, Michels D, Haberkorn C I. et al . Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C.  J Hepatol. 2001;  34 239-247
  • 92 El-Gindy I, El R ahman AT, El-Alim M A. et al . Diagnostic potential of serum matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 as non-invasive markers of hepatic fibrosis in patients with HCV related chronic liver disease.  Egypt J Immunol. 2003;  10 27-35
  • 93 Reif S, Somech R, Brazovski E. et al . Matrix metalloproteinases 2 and 9 are markers of inflammation but not of the degree of fibrosis in chronic hepatitis C.  Digestion. 2005;  71 124-130
  • 94 Jiang Y, Liu J, Waalkes M. et al . Changes in the gene expression associated with carbon tetrachloride-induced liver fibrosis persist after cessation of dosing in mice.  Toxicol Sci. 2004;  79 404-410
  • 95 Bergheim I, Guo L, Davis M A. et al . Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis.  J Pharmacol Exp Ther. 2006;  316 592-600
  • 96 Knittel T, Mehde M, Grundmann A. et al . Expression of matrix metalloproteinases and their inhibitors during hepatic tissue repair in the rat.  Histochem Cell Biol. 2000;  113 443-453
  • 97 Murawaki Y, Ikuta Y, Okamoto K. et al . Serum matrix metalloproteinase-3 (stromelysin-1) concentration in patients with chronic liver disease.  J Hepatol. 1999;  31 474-481
  • 98 Herbst H, Heinrichs O, Schuppan D. et al . Temporal and spatial patterns of transin/stromelysin RNA expression following toxic injury in rat liver.  Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;  60 295-300
  • 99 Iredale J P, Goddard S, Murphy G. et al . Tissue inhibitor of metalloproteinase-I and interstitial collagenase expression in autoimmune chronic active hepatitis and activated human hepatic lipocytes.  Clin Sci (Lond). 1995;  89 75-81
  • 100 Yan S, Chen G M, Yu C H. et al . Expression pattern of matrix metalloproteinases-13 in a rat model of alcoholic liver fibrosis.  Hepatobiliary Pancreat Dis Int. 2005;  4 569-572
  • 101 Yata Y, Takahara T, Furui K. et al . Spatial distribution of tissue inhibitor of metalloproteinase-1 mRNA in chronic liver disease.  J Hepatol. 1999;  30 425-432
  • 102 Roeb E, Rose-John S, Erren A. et al . Tissue inhibitor of metalloproteinases-2 (TIMP-2) in rat liver cells is increased by lipopolysaccharide and prostaglandin E2.  FEBS Lett. 1995;  357 33-36

Prof. Dr. Elke Roeb

University Hospital Giessen, Department of Medicine II, Gastroenterology

Paul-Meimberg-Str. 5

35392 Giessen

Germany

Telefon: ++49/6 41/9 94 23 38

Fax: ++49/6 41/9 94 23 39

eMail: elke.roeb@innere.med.uni-giessen.de

    >