References
<A NAME="RM01206SS-1">1</A>
Present Address: Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg
30, 2340 Beerse, Belgium.
<A NAME="RM01206SS-2">2</A>
Present Address: Battelle, 505 King Avenue, Columbus, Ohio 43201, USA.
<A NAME="RM01206SS-3A">3a</A>
Lamarre D.
Anderson PC.
Bailey M.
Beaulieu P.
Bolger G.
Bonneau P.
Boes M.
Cameron DR.
Cartier M.
Cordingley MG.
Faucher A.-M.
Goudreau N.
Kawai SH.
Kukolj G.
Lagace L.
LaPlante SR.
Narjes H.
Poupart M.-A.
Rancourt J.
Sentjens RE.
St. George R.
Simoneau B.
Steinmann G.
Thibeault D.
Tsantrizos YS.
Weldon SM.
Yong C.-L.
Llinàs-Brunet M.
Nature (London)
2003,
426:
186
<A NAME="RM01206SS-3B">3b</A>
Llinàs-Brunet M.
Bailey M.
Bolger G.
Brochu C.
Faucher A.-M.
Ferland J.-M.
Garneau M.
Ghiro E.
Gorys V.
Grand-Maître C.
Halmos T.
Lapeyre-Paquette N.
Liard F.
Poirier M.
Rhéaume M.
Tsantrizos YS.
Lamarre D.
J. Med. Chem.
2004,
47:
1605
<A NAME="RM01206SS-4">4</A>
Faucher A.-M.
Bailey MD.
Beaulieu PL.
Brochu Duceppe J.-S..
Ferland J.-M.
Ghiro E.
Gorys V.
Halmos T.
Kawai SH.
Poirier M.
Simoneau B.
Tsantrizos YS.
Llinàs-Brunet M.
Org. Lett.
2004,
6:
2901
<A NAME="RM01206SS-5">5</A> For an alternative approach to 3 via a carbonylative Sonogashira coupling-cyclization see:
Haddad N.
Tan J.
Farina V.
J. Org. Chem. submitted for publication
For additional examples of similar cyclizations to prepare quinolones, see:
<A NAME="RM01206SS-6A">6a</A>
Combs DW.
Reed MS.
Klaubert DH.
Synth. Commun.
1992,
22:
323
<A NAME="RM01206SS-6B">6b</A>
Li L.
Wang H.-K.
Kuo S.-C.
Wu T.-S.
Lednicer D.
Lin CM.
Hamel E.
Lee K.-H.
J. Med. Chem.
1994,
37:
1126
<A NAME="RM01206SS-6C">6c</A>
Fuerstner A.
Hupperts A.
Ptock A.
Janssen E.
J. Org. Chem.
1994,
59:
5215
<A NAME="RM01206SS-6D">6d</A>
Li L.
Wang H.-K.
Kuo S.-C.
Wu T.-S.
Mauger A.
Lin CM.
Hamel E.
Lee K.-H.
J. Med. Chem.
1994,
37:
3400
<A NAME="RM01206SS-6E">6e</A>
Mahboobi S.
Pongratz H.
Synth. Commun.
1999,
29:
1645
<A NAME="RM01206SS-6F">6f</A>
Traxler P.
Green J.
Mett H.
Séquin U.
Furet P.
J. Med. Chem.
1999,
6:
1018
<A NAME="RM01206SS-6G">6g</A>
Takami H.
Kishibayashi N.
Ishii A.
Kumazawa T.
Bioorg. Med. Chem.
1998,
6:
2441
<A NAME="RM01206SS-6H">6h</A>
Haesslein J.-L.
Baholet I.
Fortin M.
Iltis A.
Khider J.
Periers AM.
Pierre C.
Vevert J.-P.
Bioorg. Med. Chem. Lett.
2000,
10:
1487
<A NAME="RM01206SS-6I">6i</A>
Beney C.
Hadjeri M.
Mariotte A.-M.
Boumendjel A.
Tetrahedron Lett.
2000,
41:
7037
<A NAME="RM01206SS-6J">6j</A>
Niedzinski EJ.
Lashley MR.
Nantz MH.
Heterocycles
2001,
55:
623
For additional examples of thiazoles prepared from 3-bromopyruvic acid in a similar
fashion, see:
<A NAME="RM01206SS-7A">7a</A>
Kelly TR.
Echavarren A.
Chandrakumar NS.
Koeksal Y.
Tetrahedron Lett.
1984,
25:
2127
<A NAME="RM01206SS-7B">7b</A>
Bailey N.
Dean AW.
Judd DB.
Middlemiss D.
Storer R.
Watson SP.
Bioorg. Med. Chem. Lett.
1996,
6:
1409
<A NAME="RM01206SS-8">8</A>
Brown FJ.
Bernstein PR.
Cronk LA.
Dosset DL.
Hebbel KC.
Maduskuie TP.
Shapiro HS.
Vacek EP.
Yee YK.
Willard AK.
Krell RD.
Snyder DW.
J. Med. Chem.
1989,
32:
807
Water-soluble side-products from the reaction mixture were not isolated, but most
likely a major side-product was 4-amino-2-hydroxyacetophenone. For leading references
on the related formation of 4-acetamido-2-hydroxyaceto-phenone by Friedel-Crafts acylation/demethylation
of 4-acetamido-2-methoxyacetophenone and similar reactions, see:
<A NAME="RM01206SS-9A">9a</A>
Gibson CS.
Levin B.
J. Chem. Soc.
1931,
2388
<A NAME="RM01206SS-9B">9b</A>
Chen FC.
Chang CT.
J. Chem. Soc.
1958,
146
<A NAME="RM01206SS-9C">9c</A>
Cignarella G.
Barlocco D.
Curzu MM.
Pinna GA.
Cazzulani P.
Cassin M.
Lumachi B.
Eur. J. Med. Chem.
1990,
25:
749
<A NAME="RM01206SS-10A">10a</A>
Sugasawa T.
Toyoda T.
Adachi M.
Sasakura K.
J. Am. Chem. Soc.
1978,
78:
4842
<A NAME="RM01206SS-10B">10b</A>
Douglas AW.
Abramson NL.
Houpis IN.
Karady S.
Molina A.
Xavier LC.
Yasuda N.
Tetrahedron Lett.
1994,
35:
6807
<A NAME="RM01206SS-11">11</A> For recent mechanistic studies and industrial application of the Sugasawa reaction,
see:
Prasad K.
Lee GT.
Chaudhary A.
Girgis MJ.
Streemke JW.
Repič O.
Org. Process Res. Dev.
2003,
7:
723
<A NAME="RM01206SS-12">12</A>
Sugasawa T.
Adachi M.
Sasakura K.
Kitagawa A.
J. Org. Chem.
1979,
44:
578
<A NAME="RM01206SS-13">13</A>
Houpis IN.
Molina A.
Douglas AW.
Xavier L.
Lynch J.
Volante RP.
Reider PJ.
Tetrahedron Lett.
1994,
35:
6811
<A NAME="RM01206SS-14">14</A>
The yield was determined by a quantitative HPLC assay.
<A NAME="RM01206SS-15">15</A>
2-Isopropylamino-7-methoxy-4-methylene-4,9-dihydro-3-thia-1,9-diazabenz[f]azulen-10-one (11): 1H NMR (400 MHz, DMSO-d
6): δ = 1.14 (d, J = 6.4 H, 6 H), 3.72 (s, 3 H), 3.70-3.85 (m, 1 H), 5.30 (s, 1 H), 5.34 (s, 1 H), 6.70-6.75
(m, 2 H), 6.75 (d, J = 2.4 Hz, 1 H), 7.28 (d, J = 8.5 Hz, 1 H), 7.74 (d, J = 7.5 Hz, 1 H), 10.0 (s, 1 H). 13C NMR (100 MHz, DMSO-d
6): δ = 22.7, 46.3, 55.7, 106.4, 110.6, 116.8, 123.1, 130.1, 131.5, 137.0, 139.6, 160.2,
161.4, 163.9.
<A NAME="RM01206SS-16">16</A> Up to 50% of 11 was formed when the reaction was carried out at 50 °C. Electrophilic reaction of
2-aminothiazoles at C-5 is well precedented. In this case, it may be promoted by ionization
of the C-2 isopropylamino group, although usually strong bases like sodium amide have
been employed to obtain deprotonation at such amino groups. See:
Heterocyclic Compounds
Weissberger A.
Taylor EC.
Wiley;
New York:
1979.
<A NAME="RM01206SS-17">17</A>
A manuscript describing the complete assembly of BILN 2061 using 3 is in preparation and will be published in due course.