Semin Neurol 2006; 26(4): 396-402
DOI: 10.1055/s-2006-948320
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Postresuscitative Intensive Care: Neuroprotective Strategies after Cardiac Arrest

Wendy L. Wright1 , Romergryko G. Geocadin2
  • 1Departments of Neurology and Neurosurgery, Emory University Hospital, Atlanta, Georgia
  • 2Department of Neurology, Anesthesiology-Critical Care Medicine, and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
Further Information

Publication History

Publication Date:
10 August 2006 (online)

ABSTRACT

Cardiac arrest is a common disease in the United States, and many patients will die as a result of the neurological damage suffered during the anoxic period, or will live in a neurologically debilitated state. When cardiopulmonary-cerebral resuscitation results in the return of spontaneous circulation, intensive care is required to optimize neurological recovery. Such “brain-oriented” therapies include routine care, such as positioning and maintenance of volume status; optimization of cerebral perfusion, with the use of vasopressors if needed; management of increased intracranial pressure with agents such as hypertonic saline; assuring adequate oxygenation and avoiding hypercapnia; aggressive fever control; intensive glucose control, with the use of an insulin drip if needed; and management of seizures if they occur. To date, no neuroprotectant medications have been shown to improve neurological outcome. Induced moderate therapeutic hypothermia is utilized as a neuroprotective maneuver. Future treatment options and advanced monitoring techniques are also discussed. Further study to optimize neuroprotective strategies when treating patients who survive cardiac arrest is needed.

REFERENCES

  • 1 O'Neil B J, Krause G S, Grossman L I et al.. Global brain ischemia and reperfusion by cardiac arrest and resuscitation. In: Paradis N, Halpern H, Nowak R Cardiac Arrest: The Science and Practice of Resuscitation Medicine. Baltimore: Williams and Wilkins 1996: 84-112
  • 2 Herlitz J, Andersson E, Bang A et al.. Experiences from treatment of out-of-hospital cardiac arrest during 17 years in Goteborg [see comments].  Eur Heart J. 2000;  21 1251-1258
  • 3 Krause G S, Kumar K, White B C et al.. Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection.  Am Heart J. 1986;  111 768-780
  • 4 Pusswald G, Fertl E, Faltl M, Auff E. Neurological rehabilitation of severely disabled cardiac arrest survivors: Part II. Life situation of patients and families after treatment.  Resuscitation. 2000;  47 241-248
  • 5 Advances in cardiovascular life support-section 8: postresuscitation care.  Circulation. 2000;  102(suppl I) I166-I177
  • 6 Safar P. On the history of modern resuscitation.  Crit Care Med. 1996;  24(suppl) S3-S11
  • 7 Bell D D, Brindley P G, Forrest D, Al Muslin O, Zygun D. Management following resuscitation from cardiac arrest: recommendations from the 2003 Rocky Mountain Critical Care Conference.  Can J Anaesth. 2005;  52 309-322
  • 8 Sundgreen C, Larsen F S, Herzog T M et al.. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest.  Stroke. 2001;  32 128-132
  • 9 Mullner M, Sterz F, Binder M et al.. Arterial blood pressure after human cardiac arrest and neurological recovery.  Stroke. 1996;  27 59-62
  • 10 Sterz F, Leonov Y, Safar P et al.. Hypertension with or without hemodilution after cardiac arrest in dogs.  Stroke. 1990;  21 1178-1184
  • 11 Bhardwaj A, Ulatowski J. Hypertonic saline solutions in brain injury.  Curr Opin Crit Care. 2004;  10 126-131
  • 12 Sakabe T, Tateishi A, Miyauchi Y et al.. Intracranial pressure following cardiopulmonary resuscitation.  Intensive Care Med. 1987;  13 256-259
  • 13 Bhardwaj A. Cerebral edema and intracranial hypertension. In: Bhardwaj A, Mirski MA, Ulatowski JA Handbook of Neurocritical Care. Totowa, NJ; Humana Press 2004
  • 14 Ropper A H, Rockoff M A. Physiological and clinical aspects of raised intracranial pressure. In: Ropper AH Neurological and Neurosurgical Intensive Care. 3rd ed. New York; Raven Press 1993: 11-28
  • 15 Ausina A, Baguena M, Nadal M et al.. Cerebral hemodynamic changes during sustained hypocapnia in severe head injury: can hyperventilation cause cerebral ischemia?.  Acta Neurochir Suppl. 1998;  71 1-4
  • 16 Diringer M N, Yundt K, Videen T O et al.. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury.  J Neurosurg. 2000;  92 7-13
  • 17 Yundt K D, Diringer M N. The use of hyperventilation and its impact on cerebral ischemia in the treatment of traumatic brain injury.  Crit Care Clin. 1997;  13 163-184
  • 18 Grubb N R. Managing out-of-hospital cardiac arrest survivors: 1. Neurological perspective.  Heart. 2001;  85 6-8
  • 19 Zeiner A, Holzer M, Sterz F et al.. Hyperthermia after cardiac arrest is associated with an unfavorable neurologic outcome.  Arch Intern Med. 2001;  161 2007-2012
  • 20 Eisenburger P, Sterz F, Holzer M et al.. Therapeutic hypothermia after cardiac arrest.  Curr Opin Crit Care. 2001;  7 184-188
  • 21 Sieber F E, Traystman R J. Special issues: glucose and the brain.  Crit Care Med. 1992;  20 104-114
  • 22 Parsons M W, Barber P A, Desmond P M et al.. Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study.  Ann Neurol. 2002;  52 20-28
  • 23 Weir C J, Murray G D, Dyker A G, Lees K R. Is hyperglycemia an independent predictor of poor outcome after acute stroke? Results of a long-term follow-up study.  BMJ. 1997;  314 1303-1306
  • 24 Williams L S, Rotich J, Qi R et al.. Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke.  Neurology. 2002;  59 67-71
  • 25 Woo E, Chan Y W, Yu Y L, Huang C Y. Admission glucose level in relation to mortality and morbidity outcome in 252 stroke patients.  Stroke. 1988;  19 185-191
  • 26 Longstreth W T, Inui T S, Cobb L A, Compass M K. Neurologic recovery after out-of-hospital cardiac arrest.  Ann Intern Med. 1983;  98 588-592
  • 27 Longstreth Jr W T, Copass M K, Dennis L K et al.. Intravenous glucose after out-of-hospital cardiopulmonary arrest: a community-based randomized trial.  Neurology. 1993;  43 2534-2541
  • 28 Van den Berghe G, Wouters P, Weekers F et al.. Intensive insulin therapy in critically ill patients.  N Engl J Med. 2001;  345 1359-1367
  • 29 Longstreth W T. Neurologic complications of cardiac arrest. In: Aminoff MJ Neurology and General Medicine. 3rd ed. Philadelphia; Churchill Livingstone 2001: 151-170
  • 30 Celesia G G, Grigg M M, Ross E. Generalized status myoclonus in acute anoxic and toxic-metabolic encephalopathies.  Arch Neurol. 1988;  45 781-784
  • 31 Krumholz A, Stern B J, Weiss H D. Outcome from coma after CPR: relation to seizures and myoclonus.  Neurology. 1988;  38 401-405
  • 32 Arnoldus E PJ, Lammers G J. Postanoxic coma: good recovery despite myoclonic status.  Ann Neurol. 1995;  38 697-698
  • 33 Wijdicks E FM, Parisi J E, Sharbrough F W. Prognostic value of myoclonus status in comatose survivors of cardiac arrest.  Ann Neurol. 1994;  35 239-243
  • 34 Buunk G, van der Hoeven J G, Meinders A E. Cerebral blood flow after cardiac arrest.  Neth J Med. 2000;  57 106-112
  • 35 Werhahn K J, Brown P, Thompson P D, Marsden C D. The clinical features and prognosis of chronic posthypoxic myoclonus.  Mov Disord. 1997;  12 216-220
  • 36 Krumholz A, Berg A. Further evidence that for status epilepticus “one size fits all” doesn't fit.  Neurology. 2002;  58 515-516
  • 37 Jörgensen E O, Holm S. Prediction of neurological outcome after cardiopulmonary resuscitation.  Resuscitation. 1999;  41 145-152
  • 38 Goh W C, Heath P D, Ellis S J, Oakley P A. Neurologic outcome prediction in a cardiorespiratory arrest survivor.  Br J Anaesth. 2002;  88 719-722
  • 39 Young G B, Gilbert J J, Zochodne D W. The significance of myoclonic status epilepticus in postanoxic coma.  Neurology. 1990;  40 1843-1848
  • 40 Bernard S A, Gray T W, Buist M D et al.. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.  N Engl J Med. 2002;  346 557-563
  • 41 Longstreth W T, Fahrenbruch C E, Olsufka M et al.. Randomized clinical trial of magnesium, diazepam, or both after out-of-hospital cardiac arrest.  Neurology. 2002;  59 506-514
  • 42 Lindner K H, Dirks B, Strohmenger H U et al.. Randomised comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation.  Lancet. 1997;  349 535-537
  • 43 Gueugniaud P Y, Mols P, Goldstein P et al.. A comparison of repeated high doses and repeated standard doses of epinephrine for cardiac arrest outside the hospital. European Epinephrine Study Group.  N Engl J Med. 1998;  339 1595-1601
  • 44 Stiell I G, Hebert P C, Wells G A et al.. Vasopressin versus epinephrine for inhospital cardiac arrest: a randomized controlled trial.  Lancet. 2001;  358 105-109
  • 45 A randomized clinical trial of calcium entry blocker administration to comatose survivors of cardiac arrest: design, methods, and patient characteristics. The Brain Resuscitation Clinical Trial II Study Group.  Control Clin Trials. 1991;  12 525-545
  • 46 Jastremski M, Sutton-Tyrrell K, Vaagenes P et al.. Glucocorticoid treatment does not improve neurological recovery following cardiac arrest. Brain Resuscitation Clinical Trial I Study Group.  JAMA. 1989;  262 3427-3430
  • 47 Safar P. On the history of modern resuscitation.  Crit Care Med. 1996;  24(suppl) S3-S11
  • 48 Bottiger B W, Martin E. Thrombolytic therapy during cardiopulmonary resuscitation and the role of coagulation activation after cardiac arrest.  Curr Opin Crit Care. 2001;  7 176-183
  • 49 Koehler R C, Michael J R. Cardiopulmonary resuscitation, brain blood flow and neurologic recovery.  Crit Care Clin. 1985;  1 205-222
  • 50 Cohan S L, Mun S K, Petite J. Cerebral blood flow in humans following resuscitation from cardiac arrest.  Stroke. 1989;  20 761-765
  • 51 Lee S K, Vaagenes P, Safar P. Effect of cardiac arrest time on cortical cerebral blood flow during subsequent standard external cardiopulmonary resuscitation in rabbits.  Resuscitation. 1989;  17 105-117
  • 52 Safar P. Cerebral resuscitation after cardiac arrest: research initiatives and future directions.  Ann Emerg Med. 1993;  22 324-349
  • 53 Sterz F, Leonov Y, Safar P et al.. Multifocal cerebral blood flow by Xe-CT and global cerebral metabolism after prolonged cardiac arrest in dogs: reperfusion with open-chest CPR or cardiopulmonary bypass.  Resuscitation. 1992;  24 27-47
  • 54 Schreiber W, Gabriel D, Sterz F et al.. Thrombolytic therapy after cardiac arrest and its effect on neurological outcome.  Resuscitation. 2002;  52 63-69
  • 55 Hekmatpanah J. Cerebral blood flow dynamics in hypotension and cardiac arrest.  Neurology. 1973;  23 174-180
  • 56 Bottiger B W, Motsch J, Bohrer H et al.. Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis.  Circulation. 1995;  92 2572-2578
  • 57 Van Campen L CMC, van Leeuwen G R, Verheugt F WA. Safety and efficacy of thrombolysis for acute myocardial infarction in patients with prolonged out-of-hospital cardiopulmonary resuscitation.  Am J Cardiol. 1994;  73 953-955
  • 58 Gore J M, Sloan M, Price T R et al.. Intracerebral hemorrhage, cerebral infarction and subdural hematoma after acute myocardial infarction and thrombolytic therapy in the Thrombolysis in Myocardial Infarction Study.  Circulation. 1991;  83 448-459
  • 59 Scholz K H, Tebbe U, Herrmann C et al.. Frequency of complications of cardiopulmonary resuscitation after thrombolysis during acute myocardial infarction.  Am J Cardiol. 1992;  69 724-728
  • 60 Bottiger B W, Bode C, Kern S et al.. Efficacy and safety of thrombolytic therapy after initially unsuccessful cardiopulmonary resuscitation: a prospective clinical trial.  Lancet. 2001;  357 1583-1585
  • 61 Kariman K, Hempel F G, Jobsis F F. In vivo comparison of cytochrome a/a3 redox states and tissue pO2 in transient anoxia.  J Appl Physiol. 1983;  55 1057-1063
  • 62 Kiening K L, Unterberg A W, Bardt T F et al.. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue pO2 versus jugular vein oxygen saturation.  J Neurosurg. 1996;  85 751-757
  • 63 Dings J, Meixensberger J, Amschler J, Hamelbeck B, Roosen K. Brain tissue pO2 in relation to cerebral perfusion pressure, TCD findings and TCD-CO2 reactivity after severe head injury.  Acta Neurochir (Wien). 1996;  138 425-434
  • 64 Gopinath S P, Valadka A B, Uzura M et al.. Comparison of jugular venous oxygen saturation and brain tissue pO2 as monitors of cerebral ischemia.  Crit Care Med. 1999;  27 2337-2345
  • 65 Goodman J C, Valadka A B, Gopinath S P, Uzura M, Robertson C S. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis.  Crit Care Med. 1999;  27 1965-1973
  • 66 Lewis K S, Kane-Gill S L, Bobek M B, Dasta J F. Intensive insulin therapy for critically ill patients.  Ann Pharmacother. 2004;  38 1243-1251

Wendy L WrightM.D. 

Assistant Professor, Neuroscience Critical Care and Cerebrovascular Disease, Departments of Neurology and Neurosurgery, Emory University Hospital

1365B Clifton Road, NE, Suite 2200, Atlanta, GA 30322

    >