Semin Reprod Med 2006; 24(4): 204-216
DOI: 10.1055/s-2006-948550
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Tracking Down the ZP Domain: From the Mammalian Zona Pellucida to the Molluscan Vitelline Envelope

Magnus Monné1 , Ling Han1 , Luca Jovine1
  • 1Karolinska Institutet, Department of Biosciences and Nutrition, Center for Structural Biochemistry, Huddinge, Sweden
Further Information

Publication History

Publication Date:
30 August 2006 (online)

ABSTRACT

Oocytes from virtually all organisms are surrounded by at least one coat. This specialized extracellular matrix, called the zona pellucida (ZP) in mammals and the vitelline envelope (VE) in nonmammals, has a structural function and plays essential roles in oogenesis, fertilization, and early development. During the last 15 years, compelling evidence has accumulated that all ZP/VE subunits polymerize using a conserved sequence, the ZP domain, so that the basic structural features of egg coat matrices have been maintained through evolution. Moreover, ZP domains have been identified in many other polymeric extracellular proteins from eukaryotes. This review compares the ultrastructure and molecular composition of egg coats from mollusc to human, suggests a common mechanism for assembly of ZP/VE proteins, and discusses alternative models of how these could be arranged within filaments.

REFERENCES

  • 1 Wassarman P M, Jovine L, Litscher E S. A profile of fertilization in mammals.  Nat Cell Biol. 2001;  3 E59-E64
  • 2 Wassarman P M, Mortillo S. Structure of the mouse egg extracellular coat, the zona pellucida.  Int Rev Cytol. 1991;  130 85-110
  • 3 Smith J, Paton I R, Hughes D C, Burt D W. Isolation and mapping the chicken zona pellucida genes: an insight into the evolution of orthologous genes in different species.  Mol Reprod Dev. 2005;  70 133-145
  • 4 Conner S J, Lefievre L, Hughes D C, Barratt C L. Cracking the egg: increased complexity in the zona pellucida.  Hum Reprod. 2005;  20 1148-1152
  • 5 Wassarman P M. Zona pellucida glycoproteins.  Annu Rev Biochem. 1988;  57 415-442
  • 6 Hoodbhoy T, Joshi S, Boja E S, Williams S A, Stanley P, Dean J. Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins.  J Biol Chem. 2005;  280 12721-12731
  • 7 Lefievre L, Conner S J, Salpekar A et al.. Four zona pellucida glycoproteins are expressed in the human.  Hum Reprod. 2004;  19 1580-1586
  • 8 Galindo B E, Moy G W, Swanson W J, Vacquier V D. Full-length sequence of VERL, the egg vitelline envelope receptor for abalone sperm lysin.  Gene. 2002;  288 111-117
  • 9 Wassarman P M, Jovine L, Qi H, Williams Z, Darie C, Litscher E S. Recent aspects of mammalian fertilization research.  Mol Cell Endocrinol. 2005;  234 95-103
  • 10 Bork P, Sander C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-β type III receptor.  FEBS Lett. 1992;  300 237-240
  • 11 Jovine L, Darie C C, Litscher E S, Wassarman P M. Zona pellucida domain proteins.  Annu Rev Biochem. 2005;  74 83-114
  • 12 Boja E S, Hoodbhoy T, Fales H M, Dean J. Structural characterization of native mouse zona pellucida proteins using mass spectrometry.  J Biol Chem. 2003;  278 34189-34202
  • 13 Darie C C, Biniossek M L, Jovine L, Litscher E S, Wassarman P M. Structural characterization of fish egg vitelline envelope proteins by mass spectrometry.  Biochemistry. 2004;  43 7459-7478
  • 14 Jovine L, Qi H, Williams Z, Litscher E, Wassarman P M. The ZP domain is a conserved module for polymerization of extracellular proteins.  Nat Cell Biol. 2002;  4 457-461
  • 15 Jovine L, Qi H, Williams Z, Litscher E S, Wassarman P M. A duplicated motif controls assembly of zona pellucida domain proteins.  Proc Natl Acad Sci USA. 2004;  101 5922-5927
  • 16 Litscher E S, Qi H, Wassarman P M. Mouse zona pellucida glycoproteins mZP2 and mZP3 undergo carboxy-terminal proteolytic processing in growing oocytes.  Biochemistry. 1999;  38 12280-12287
  • 17 Qi H, Williams Z, Wassarman P M. Secretion and assembly of zona pellucida glycoproteins by growing mouse oocytes microinjected with epitope-tagged cDNAs for mZP2 and mZP3.  Mol Biol Cell. 2002;  13 530-541
  • 18 Williams Z, Wassarman P M. Secretion of mouse ZP3, the sperm receptor, requires cleavage of its polypeptide at a consensus furin cleavage-site.  Biochemistry. 2001;  40 929-937
  • 19 Florman H M, Wassarman P M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity.  Cell. 1985;  41 313-324
  • 20 Kinloch R A, Sakai Y, Wassarman P M. Mapping the mouse ZP3 combining site for sperm by exon swapping and site-directed mutagenesis.  Proc Natl Acad Sci USA. 1995;  92 263-267
  • 21 Chen J, Litscher E S, Wassarman P M. Inactivation of the mouse sperm receptor, mZP3, by site-directed mutagenesis of individual serine residues located at the combining site for sperm.  Proc Natl Acad Sci USA. 1998;  95 6193-6197
  • 22 Williams Z, Litscher E S, Jovine L, Wassarman P M. Polypeptide encoded by mouse ZP3 exon-7 is necessary and sufficient for binding of mouse sperm in vitro .  J Cell Physiol. 2006;  207 30-39
  • 23 Rankin T L, Coleman J S, Epifano O et al.. Fertility and taxon-specific sperm binding persist after replacement of mouse sperm receptors with human homologs.  Dev Cell. 2003;  5 33-43
  • 24 Dean J. Reassessing the molecular biology of sperm-egg recognition with mouse genetics.  Bioessays. 2004;  26 29-38
  • 25 Chalabi S, Panico M, Sutton-Smith M et al.. Differential O-glycosylation of a conserved domain expressed in murine and human ZP3.  Biochemistry. 2006;  45 637-647
  • 26 Schwartz P, Hinney B, Nayudu P L, Michelmann H W. Oocyte-sperm interaction in the course of IVF: a scanning electron microscopy analysis.  Reprod Biomed Online. 2003;  7 205-210
  • 27 Breed W G, Hope R M, Wiebkin O W, Spargo S C, Chapman J A. Structural organization and evolution of the marsupial zona pellucida.  Reproduction. 2002;  123 13-21
  • 28 Bellairs R, Harkness M, Harkness R D. The vitelline membrane of the hen's egg: a chemical and electron microsopical study.  J Ultrastruct Res. 1963;  8 339-359
  • 29 Howarth B. Avian sperm-egg interaction: perivitelline layer possesses receptor activity for spermatozoa.  Poult Sci. 1990;  69 1012-1015
  • 30 Bakst M R, Howarth Jr B. Hydrolysis of the hen's perivitelline layer by cock sperm in vitro .  Biol Reprod. 1977;  17 370-379
  • 31 Pan J, Sasanami T, Kono Y, Matsuda T, Mori M. Effects of testosterone on production of perivitelline membrane glycoprotein ZPC by granulosa cells of Japanese quail (Coturnix japonica).  Biol Reprod. 2001;  64 310-316
  • 32 Sasanami T, Toriyama M, Mori M. Carboxy-terminal proteolytic processing at a consensus furin cleavage site is a prerequisite event for quail ZPC secretion.  Biol Reprod. 2003;  68 1613-1619
  • 33 Takeuchi Y, Nishimura K, Aoki N et al.. A 42-kDa glycoprotein from chicken egg-envelope, an avian homolog of the ZPC family glycoproteins in mammalian zona pellucida. Its first identification, cDNA cloning and granulosa cell-specific expression.  Eur J Biochem. 1999;  260 736-742
  • 34 Waclawek M, Foisner R, Nimpf J, Schneider W J. The chicken homologue of zona pellucida protein-3 is synthesized by granulosa cells.  Biol Reprod. 1998;  59 1230-1239
  • 35 Bausek N, Waclawek M, Schneider W J, Wohlrab F. The major chicken egg envelope protein ZP1 is different from ZPB and is synthesized in the liver.  J Biol Chem. 2000;  275 28866-28872
  • 36 Sasanami T, Pan J, Mori M. Expression of perivitelline membrane glycoprotein ZP1 in the liver of Japanese quail (Coturnix japonica) after in vivo treatment with diethylstilbestrol.  J Steroid Biochem Mol Biol. 2003;  84 109-116
  • 37 Okumura H, Kohno Y, Iwata Y et al.. A newly identified zona pellucida glycoprotein, ZPD, and dimeric ZP1 of chicken egg envelope are involved in sperm activation on sperm-egg interaction.  Biochem J. 2004;  384 191-199
  • 38 Takeuchi Y, Cho R, Iwata Y et al.. Morphological and biochemical changes of isolated chicken egg-envelope during sperm penetration: degradation of the 97-kilodalton glycoprotein is involved in sperm-driven hole formation on the egg-envelope.  Biol Reprod. 2001;  64 822-830
  • 39 Pan J, Sasanami T, Nakajima S, Kido S, Doi Y, Mori M. Characterization of progressive changes in ZPC of the vitelline membrane of quail oocyte following oviductal transport.  Mol Reprod Dev. 2000;  55 175-181
  • 40 Watanabe A, Onitake K. The urodele egg-coat as the apparatus adapted for the internal fertilization.  Zoolog Sci. 2002;  19 1341-1347
  • 41 Bakos M A, Kurosky A, Hedrick J L. Physicochemical characterization of progressive changes in the Xenopus laevis egg envelope following oviductal transport and fertilization.  Biochemistry. 1990;  29 609-615
  • 42 Larabell C A, Chandler D E. Stepwise transformation of the vitelline envelope of Xenopus eggs at activation: a quick-freeze, deep-etch analysis.  Dev Biol. 1990;  139 263-268
  • 43 Kubo H, Kawano T, Tsubuki S, Kotani M, Kawasaki H, Kawashima S. Egg envelope glycoprotein gp37 as a Xenopus homolog of mammalian ZP1, based on cDNA cloning.  Dev Growth Differ. 2000;  42 419-427
  • 44 Tian J, Gong H, Lennarz W J. Xenopus laevis sperm receptor gp69/64 glycoprotein is a homolog of the mammalian sperm receptor ZP2.  Proc Natl Acad Sci USA. 1999;  96 829-834
  • 45 Kubo H, Kawano T, Tsubuki S, Kawashima S, Katagiri C, Suzuki A. A major glycoprotein of Xenopus egg vitelline envelope, gp41, is a frog homolog of mammalian ZP3.  Dev Growth Differ. 1997;  39 405-417
  • 46 Lindsay L L, Wallace M A, Hedrick J L. A hatching enzyme substrate in the Xenopus laevis egg envelope is a high molecular weight ZPA homolog.  Dev Growth Differ. 2001;  43 305-313
  • 47 Lindsay L L, Yang J C, Hedrick J L. Identification and characterization of a unique Xenopus laevis egg envelope component, ZPD.  Dev Growth Differ. 2002;  44 205-212
  • 48 Kubo H, Matsushita M, Kotani M et al.. Molecular basis for oviductin-mediated processing from gp43 to gp41, the predominant glycoproteins of Xenopus egg envelopes.  Dev Genet. 1999;  25 123-129
  • 49 Vo L H, Yen T Y, Macher B A, Hedrick J L. Identification of the ZPC oligosaccharide ligand involved in sperm binding and the glycan structures of Xenopus laevis vitelline envelope glycoproteins.  Biol Reprod. 2003;  69 1822-1830
  • 50 Tian J, Gong H, Thomsen G H, Lennarz W J. Gamete interactions in Xenopus laevis: identification of sperm binding glycoproteins in the egg vitelline envelope.  J Cell Biol. 1997;  136 1099-1108
  • 51 Tian J, Gong H, Thomsen G H, Lennarz W J. Xenopus laevis sperm-egg adhesion is regulated by modifications in the sperm receptor and the egg vitelline envelope.  Dev Biol. 1997;  187 143-153
  • 52 Lindsay L L, Hedrick J L. Proteolysis of Xenopus laevis egg envelope ZPA triggers envelope hardening.  Biochem Biophys Res Commun. 2004;  324 648-654
  • 53 Makabe-Kobayashi Y, Kudaira E, Watanabe A, Onitake K. CpZPC, a newt ZPC molecule, localizes to the inner surface of the egg envelope.  Int J Dev Biol. 2003;  47 51-58
  • 54 Guraya S S. The cell and molecular biology of fish oogenesis.  Monogr Dev Biol. 1986;  18 1-223
  • 55 Kagawa H, Young G, Adachi S, Nagahama Y. Estradiol-17β production in amago salmon (Oncorhynchus rhodurus) ovarian follicles: role of the thecal and granulosa cells.  Gen Comp Endocrinol. 1982;  47 440-448
  • 56 Arukwe A, Goksøyr A. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption.  Comp Hepatol. 2003;  2 4
  • 57 Sugiyama H, Iuchi I. Molecular structure and hardening of egg envelope in fish.  Rec Res Dev Comp Biochem Physiol. 2000;  1 139-161
  • 58 Hagenmaier H E. The hatching process in fish embryos III. The structure, polysaccharide and protein cytochemistry of the chorion of the trout egg, Salmo gairdneri (Rich.)  Acta Histochem. 1973;  47 61-69
  • 59 Brivio M F, Bassi R, Cotelli F. Identification and characterization of the major components of the Oncorhynchus mykiss egg chorion.  Mol Reprod Dev. 1991;  28 85-93
  • 60 Hyllner S J, Westerlund L, Olsson P E, Schopen A. Cloning of rainbow trout egg envelope proteins: members of a unique group of structural proteins.  Biol Reprod. 2001;  64 805-811
  • 61 Cotelli F, Andronico F, Brivio M, Lora Lamia C. Structure and composition of the fish egg chorion (Carassius auratus).  J Ultrastruct Mol Struct Res. 1988;  99 70-78
  • 62 Bonsignorio D, Perego L, Del Giacco L, Cotelli F. Structure and macromolecular composition of the zebrafish egg chorion.  Zygote. 1996;  4 101-108
  • 63 Kanamori A, Naruse K, Mitani H, Shima A, Hori H. Genomic organization of ZP domain containing egg envelope genes in medaka (Oryzias latipes).  Gene. 2003;  305 35-45
  • 64 Conner S J, Hughes D C. Analysis of fish ZP1/ZPB homologous genes-evidence for both genome duplication and species-specific amplification models of evolution.  Reproduction. 2003;  126 347-352
  • 65 Chang Y S, Hsu C C, Wang S C, Tsao C C, Huang F L. Molecular cloning, structural analysis, and expression of carp ZP2 gene.  Mol Reprod Dev. 1997;  46 258-267
  • 66 Mold D E, Kim I F, Tsai C M, Lee D, Chang C Y, Huang R C. Cluster of genes encoding the major egg envelope protein of zebrafish.  Mol Reprod Dev. 2001;  58 4-14
  • 67 Letunic I, Copley R R, Pils B, Pinkert S, Schultz J, Bork P. SMART 5: domains in the context of genomes and networks.  Nucleic Acids Res. 2006;  34 D257-D260
  • 68 Darie C C, Biniossek M L, Gawinowicz M A et al.. Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg.  J Biol Chem. 2005;  280 37585-37598
  • 69 Hamazaki T S, Nagahama Y, Iuchi I, Yamagami K. A glycoprotein from the liver constitutes the inner layer of the egg envelope (zona pellucida interna) of the fish, Oryzias latipes .  Dev Biol. 1989;  133 101-110
  • 70 Sugiyama H, Murata K, Iuchi I, Nomura K, Yamagami K. Formation of mature egg envelope subunit proteins from their precursors (choriogenins) in the fish, Oryzias latipes: loss of partial C-terminal sequences of the choriogenins.  J Biochem (Tokyo). 1999;  125 469-475
  • 71 Yamagami K, Hamazaki T S, Yasumasu S, Masuda K, Iuchi I. Molecular and cellular basis of formation, hardening, and breakdown of the egg envelope in fish.  Int Rev Cytol. 1992;  136 51-92
  • 72 Sawada H, Tanaka E, Ban S et al.. Self/nonself recognition in ascidian fertilization: vitelline coat protein HrVC70 is a candidate allorecognition molecule.  Proc Natl Acad Sci USA. 2004;  101 15615-15620
  • 73 Morgan T H. Removal of the block to self-fertilization in the ascidian Ciona .  Proc Natl Acad Sci USA. 1923;  9 170-171
  • 74 Eisenhut M, Honegger T G. Ultrastructure of the vitelline coat in the ascidians Phallusia mammillata, Ascidia mentula and Ciona intestinalis: new aspects revealed by freeze-substitution and deep-etching.  Mar Biol. 1997;  128 213-224
  • 75 Honegger T G. Fertilization in ascidians: studies on the egg envelope, sperm and gamete interactions in Phallusia mammillata. .  Dev Biol. 1986;  118 118-128
  • 76 Lambert C C, Goode C A. Glycolipid linkage of a polyspermy blocking glycosidase to the ascidian egg surface.  Dev Biol. 1992;  154 95-100
  • 77 Minganti A. Interspecific fertilization in ascidians.  Nature. 1948;  161 643-644
  • 78 Rosati F, De Santis R. Studies on fertilization in the ascidians, I. Self-sterility and specific recognition between gametes of Ciona intestinalis .  Exp Cell Res. 1978;  112 111-119
  • 79 Cotelli F, Andronico F, De Santis R, Monroy A, Rosati F. Differentiation of the vitelline coat in the ascidian Ciona intestinalis: an ultrastructural study.  Rouxs Arch Dev Biol. 1981;  190 252-258
  • 80 De Santis R, Pinto M R. Isolation and partial characterization of a glycoprotein complex with sperm-receptor activity from Ciona intestinalis ovary.  Dev Growth Differ. 1987;  29 617-625
  • 81 Litscher E, Honegger T G. Glycoprotein constituents of the vitelline coat of Phallusia mammillata (Ascidiacea) with fertilization inhibiting activity.  Dev Biol. 1991;  148 536-551
  • 82 Rosati F, Cotelli F, De Santis R, Monroy A, Pinto M R. Synthesis of fucosyl-containing glycoproteins of the vitelline coat in oocytes of Ciona intestinalis (Ascidia).  Proc Natl Acad Sci USA. 1982;  79 1908-1911
  • 83 Sawada H, Sakai N, Abe Y et al.. Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor.  Proc Natl Acad Sci USA. 2002;  99 1223-1228
  • 84 Ban S, Harada Y, Yokosawa H, Sawada H. Highly polymorphic vitelline-coat protein HaVC80 from the ascidian, Halocynthia aurantium: structural analysis and involvement in self/nonself recognition during fertilization.  Dev Biol. 2005;  286 440-451
  • 85 Sakai N, Sawada H, Yokosawa H. Extracellular ubiquitin system implicated in fertilization of the ascidian, Halocynthia roretzi: isolation and characterization.  Dev Biol. 2003;  264 299-307
  • 86 Mozingo N M, Vacquier V D, Chandler D E. Structural features of the abalone egg extracellular matrix and its role in gamete interaction during fertilization.  Mol Reprod Dev. 1995;  41 493-502
  • 87 Kresge N, Vacquier V D, Stout C D. Abalone lysin: the dissolving and evolving sperm protein.  Bioessays. 2001;  23 95-103
  • 88 Yang Z, Swanson W J, Vacquier V D. Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites.  Mol Biol Evol. 2000;  17 1446-1455
  • 89 Swanson W J, Vacquier V D. Concerted evolution in an egg receptor for a rapidly evolving abalone sperm protein.  Science. 1998;  281 710-712
  • 90 Galindo B E, Vacquier V D, Swanson W J. Positive selection in the egg receptor for abalone sperm lysin.  Proc Natl Acad Sci USA. 2003;  100 4639-4643
  • 91 Lewis C A, Talbot C F, Vacquier V D. A protein from abalone sperm dissolves the egg vitelline layer by a nonenzymatic mechanism.  Dev Biol. 1982;  92 227-239
  • 92 Haino-Fukushima K, Fan X, Nakamura S. Three new components contained in the vitelline coat of Tegula pfeifferi .  Zygote. 2000;  8(suppl 1) S61
  • 93 Doren S, Landsberger N, Dwyer N, Gold L, Blanchette-Mackie J, Dean J. Incorporation of mouse zona pellucida proteins into the envelope of Xenopus laevis oocytes.  Dev Genes Evol. 1999;  209 330-339
  • 94 Legan P K, Rau A, Keen J N, Richardson G P. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system.  J Biol Chem. 1997;  272 8791-8801
  • 95 Jovine L, Janssen W G, Litscher E S, Wassarman P M. The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation.  BMC Biochem. 2006;  7 11
  • 96 Zhao M, Gold L, Ginsberg A M, Liang L F, Dean J. Conserved furin cleavage site not essential for secretion and integration of ZP3 into the extracellular egg coat of transgenic mice.  Mol Cell Biol. 2002;  22 3111-3120
  • 97 Iconomidou V A, Chryssikos D G, Gionis V, Pavlidis M A, Paipetis A, Hamodrakas S J. Secondary structure of chorion proteins of the teleostean fish Dentex dentex by ATR FT-IR and FT-Raman spectroscopy.  J Struct Biol. 2000;  132 112-122
  • 98 Nara M, Yonezawa N, Shimada T et al.. Fourier transform infrared spectroscopic analysis of the intact zona pellucida of the mammalian egg: changes in the secondary structure of bovine zona pellucida proteins during fertilization.  Exp Biol Med (Maywood). 2006;  231 166-171
  • 99 Greve J M, Wassarman P M. Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat.  J Mol Biol. 1985;  181 253-264
  • 100 Rankin T, Talbot P, Lee E, Dean J. Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss.  Development. 1999;  126 3847-3855
  • 101 Iwamoto K, Ikeda K, Yonezawa N et al.. Disulfide formation in bovine zona pellucida glycoproteins during fertilization: evidence for the involvement of cystine cross-linkages in hardening of the zona pellucida.  J Reprod Fertil. 1999;  117 395-402
  • 102 Swanson W J, Vacquier V D. The rapid evolution of reproductive proteins.  Nat Rev Genet. 2002;  3 137-144
  • 103 Oehninger S, Hinsch E, Pfisterer S et al.. Use of a specific zona pellucida (ZP) protein 3 antiserum as a clinical marker for human ZP integrity and function.  Fertil Steril. 1996;  65 139-145
  • 104 Nayernia K, Adham I M, Shamsadin R, Muller C, Sancken U, Engel W. Proacrosin-deficient mice and zona pellucida modifications in an experimental model of multifactorial infertility.  Mol Hum Reprod. 2002;  8 434-440
  • 105 Sun Y P, Xu Y, Cao T, Su Y C, Guo Y H. Zona pellucida thickness and clinical pregnancy outcome following in vitro fertilization.  Int J Gynaecol Obstet. 2005;  89 258-262
  • 106 Mannikko M, Tormala R M, Tuuri T et al.. Association between sequence variations in genes encoding human zona pellucida glycoproteins and fertilization failure in IVF.  Hum Reprod. 2005;  20 1578-1585

 Dr.
Luca Jovine

Karolinska Institutet, Department of Biosciences and Nutrition

Center for Structural Biochemistry, Hälsovägen 7, S-141 57 Huddinge, Sweden

Email: luca.jovine@biosci.ki.se

    >