References
Reviews:
<A NAME="RT08706SS-1A">1a </A>
Rao YS.
Chem. Rev.
1976,
76:
625
<A NAME="RT08706SS-1B">1b </A>
Pattenden G.
Prog. Chem. Nat. Prod.
1978,
35:
133
Reviews:
<A NAME="RT08706SS-2A">2a </A>
Knight DW.
Contemp. Org. Synth.
1994,
1:
287
<A NAME="RT08706SS-2B">2b </A>
Negishi E.-I.
Kotora M.
Tetrahedron
1997,
53:
6707
<A NAME="RT08706SS-2C">2c </A>
Brückner R.
Chem. Commun.
2001,
141
<A NAME="RT08706SS-2D">2d </A>
Brückner R.
Curr. Org. Chem.
2001,
5:
679
<A NAME="RT08706SS-2E">2e </A>
Rossi R.
Bellina F. In
Targets in Heterocyclic Systems: Chemistry and Properties
Vol. 5:
Attanasi OA.
Spinelli D.
Società Chimica Italiana;
Rome:
2002.
p.169-198
Review:
<A NAME="RT08706SS-3A">3a </A>
Tejedor C.
Garcia-Tellado F.
Org. Prep. Proced. Int.
2004,
36:
33
For recent syntheses of tetronic acids using Dieckmann condensations, see:
<A NAME="RT08706SS-3B">3b </A>
Sodeoka M.
Sampe R.
Kojima S.
Baba Y.
Usui T.
Ueda K.
Osada H.
J. Med. Chem.
2001,
44:
3216
<A NAME="RT08706SS-3C">3c </A>
Mitsos CA.
Zografos AL.
Igglessi-Markopoulou O.
J. Org. Chem.
2000,
65:
5852
For a recent synthesis of tetronic acids by cyclization of γ-bromo-β-oxocarboxylic
acids, see:
<A NAME="RT08706SS-3D">3d </A>
Tabake K.
Mase N.
Nomoto M.
Daicho M.
Tauchi T.
Yoda H.
J. Chem. Soc., Perkin Trans. 1
2002,
500
For a recent synthesis of tetronic acids by acid-treatment of the 2:1-adducts formed
from aldehydes and methyl propiolate, see:
<A NAME="RT08706SS-3E">3e </A>
Aragón DT.
López GV.
Garcia-Tellado F.
Marrero-Tellado JJ.
de Armas P.
Terrero D.
J. Org. Chem.
2003,
68:
3363
For a recent synthesis of tetronic acids by lactonization of γ-hydroxy-β-oxo esters
resulting from the [2,3]-Wittig rearrangement of γ-(allyloxy)-β-oxo esters, see:
<A NAME="RT08706SS-3F">3f </A>
Pévet I.
Meyer C.
Cossy J.
Tetrahedron Lett.
2001,
42:
5215
For a recent synthesis of tetronic acids by the oxidation of β-hydroxy-γ-butyrolactones,
see:
<A NAME="RT08706SS-3G">3g </A>
Kapferer T.
Brückner R.
Herzig A.
König WA.
Chem. Eur. J.
2005,
11:
2154
Review:
<A NAME="RT08706SS-4A">4a </A>
Brückner R.
Curr. Org. Chem.
2001,
5:
679, Section 7
Recent synthesis of pulvinones using methodology from ref. 9:
<A NAME="RT08706SS-4B">4b </A>
Klostermeyer D.
Knops L.
Sindlinger T.
Polborn K.
Steglich W.
Eur. J. Org. Chem.
2000,
4:
603
Reviews:
<A NAME="RT08706SS-5A">5a </A>
Brückner R.
Curr. Org. Chem.
2001,
5:
679, Sections 8-9
<A NAME="RT08706SS-5B">5b </A>
Pattenden G.
Prog. Chem. Nat. Prod.
1978,
35:
133, Sections III.1, III.3, and IV.2
<A NAME="RT08706SS-5C">5c </A>
Gill M.
Steglich W.
Prog. Chem. Nat. Prod.
1987,
51:
1 , Section 2.1.3
Syntheses of pulvinic acids by Suzuki couplings with tetronic esters containing a
triflate substituent at Cβ:
<A NAME="RT08706SS-5D">5d </A>
Ahmed Z.
Langer P.
Tetrahedron
2005,
61:
2055
<A NAME="RT08706SS-5E">5e </A>
Ahmed Z.
Langer P.
J. Org. Chem.
2004,
64:
3753 ; and literature cited therein
For more applications of Langer’s methodology, see:
<A NAME="RT08706SS-5F">5f </A>
Heurtaux B.
Lion C.
Le Gall T.
Mioskowski C.
J. Org. Chem.
2005,
70:
1474
<A NAME="RT08706SS-5G">5g </A>
Desage-El Mur M.
Nowaczyk S.
Le Gall T.
Mioskowski C.
Amekraz B.
Moulin C.
Angew. Chem. Int. Ed.
2003,
42:
1289 ; Angew. Chem. , 2003 , 115 , 1327
<A NAME="RT08706SS-6">6 </A>
Sheley CF.
Shechter H.
J. Org. Chem.
1970,
35:
2367
<A NAME="RT08706SS-7">7 </A>
Claisen L.
Ewan T.
Justus Liebigs Ann. Chem.
1895,
284:
245
<A NAME="RT08706SS-8">8 </A>
Huang RL.
J. Chem. Soc.
1957,
4089
<A NAME="RT08706SS-9">9 </A>
Campbell AC.
Maidment MS.
Pick JH.
Stevenson DFM.
J. Chem. Soc., Perkin Trans. 1
1985,
1567
<A NAME="RT08706SS-10">10 </A>
Type 7 compounds were obtained by the addition of substituted benzylmagnesium chlorides
to the C≡N bond of the O-trimethylsilylated cyanohydrin of arylacetaldehydes, followed
by hydrolysis.
[11 ]
<A NAME="RT08706SS-11">11 </A>
Gill M.
Kiefel MJ.
Lally DA.
Ten A.
Aust. J. Chem.
1990,
43:
1497
<A NAME="RT08706SS-12">12 </A>
Method is given in ref. 9.
<A NAME="RT08706SS-13">13 </A>
Ester 9 was prepared by the alkylation of potassium phenylacetate with ethyl 2-bromo-3-phenylpropionate.
[9 ]
<A NAME="RT08706SS-14">14 </A>
Tetronic ester 10a was obtained by the base-mediated condensation of (4-methoxyphenyl)acetonitrile with
diethyl oxalate followed by O-methylation of the enol and anhydride formation: Knight,
D. W.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1979 , 62. Hydride reduction provided a separable mixture of 10a and hydroxy-10a which was once more reduced giving more 10a .
<A NAME="RT08706SS-15">15 </A>
Knight DW.
Pattenden G.
J. Chem. Soc., Perkin Trans. 1
1979,
70
<A NAME="RT08706SS-16">16 </A>
Tetronic ester 10b was obtained differently than tetronic ester 10a , namely by the Dieckmann condensation of (ethoxycarbonyl)methyl phenylacetate followed
by O-methylation.
[9 ]
<A NAME="RT08706SS-17">17 </A>
Antane S.
Caufield CE.
Hu W.
Keeney D.
Labthavikul P.
Morris K.
Naughton SM.
Petersen PJ.
Rasmussen BA.
Singh G.
Yang Y.
Bioorg. Med. Chem. Lett.
2006,
16:
176
<A NAME="RT08706SS-18">18 </A>
Reffstrup J.
Boll PM.
Phytochemistry
1979,
18:
325
<A NAME="RT08706SS-19">19 </A>
Caufield CE,
Antane SA,
Morris KM,
Naughton SM,
Quagliato DA,
Andrae PM,
Enos A, and
Chiarello JF. inventors; WO 2005/019196.
<A NAME="RT08706SS-20">20 </A>
Ramage R.
Griffiths GJ.
Shutt FE.
Sweeney JNA.
J. Chem. Soc., Perkin Trans. 1
1984,
1531
<A NAME="RT08706SS-21">21 </A>
Ramage R.
Griffiths GJ.
Shutt FE.
Sweeney JNA.
J. Chem. Soc., Perkin Trans. 1
1984,
1539
<A NAME="RT08706SS-22">22 </A>
Each of Ramage et al.’s three pulvinones emerged from a slightly different protocol:
[21 ]
(Z )-21a : Scheme
[3 ]
, steps (e1 ) and (e2 ) (there appeared to be no addition of acid other than in one of the two recrystallization
procedures); (Z )-21b was obtained from PhCHO and lithio-20a in 71% yield analogously as described in (e1 ); step (e2 ) was replaced by no evaporation of THF, adding H2 O, refluxing (30 min), evaporating the solvents, adding Et2 O-H2 O (1:1), keeping the aqueous phase, adding HCl (to pH 1), isolating the resulting
solid; (Z )-8b was obtained from PhCHO and the lithium enolate of methyl phenylacetate in 94% yield
analogously as described in (e1 ); step (e2 ) was replaced by evaporating THF, adding Et2 O-H2 O (1:1), keeping the aqueous phase, adding HCl (to pH 1), isolating the resulting
solid. We followed a blend of the three procedures, replacing Ramage’s step (e2 ) by no evaporation of THF (i.e., like towards (Z )-21b ), no refluxing with H2 O (i.e., unlike towards (Z )-21b ), adding Et2 O-H2 O (1:1), etc.
<A NAME="RT08706SS-23A">23a </A>
Burk MJ.
Kalberg CS.
Pizzano A.
J. Am. Chem. Soc.
1998,
120:
4345
Analogous addition of dialkyl phosphites/dialkyl H -phosphonates to butyl glyoxylate:
<A NAME="RT08706SS-23B">23b </A>
Pudovik AN.
Gur’yanova IV.
J. Gen. Chem. USSR (Engl. Transl.)
1967,
37:
1566 ; Zh. Obshch. Khim. , 1967 , 37 , 1649
Analogous addition of diethyl phosphite/diethyl H -phosphonate to ethyl glyoxylate, liberated from its hemi(ethyl acetal):
<A NAME="RT08706SS-23C">23c </A>
Schmidt U.
Langner J.
Kirschbaum B.
Braun C.
Synthesis
1994,
1138
<A NAME="RT08706SS-24">24 </A>Method is given in:
<A NAME="RT08706SS-24">24 </A>
Gerlach U.
Hünig S.
Angew. Chem., Int. Ed. Engl.
1987,
26:
1283 ; Angew. Chem. 1987 , 99 , 1323
<A NAME="RT08706SS-25">25 </A>
Still WC.
Kahn M.
Mitra A.
J. Org. Chem.
1978,
43:
2923
<A NAME="RT08706SS-26">26 </A>
Blanchette MA.
Choy W.
Davis JT.
Essenfeld AP.
Masamune S.
Roush WR.
Tetrahedron Lett.
1984,
25:
2183
<A NAME="RT08706SS-27">27 </A> Diaryl phosphonates (ArO)2 P(=O)CH2 CO2 Et undergoing Z -selective Horner-Wadsworth-Emmons reactions with α-chiral aldehydes in the presence
of NaI, DBU, and HMPA:
Ando K.
Oishi T.
Hirama M.
Hiroali O.
Ibuka T.
J. Org. Chem.
2000,
65:
4745 ; in order to minimize health hazards, we replaced HMPA by DMPU
<A NAME="RT08706SS-28">28 </A>
Still WC.
Gennari C.
Tetrahedron Lett.
1983,
24:
4405
<A NAME="RT08706SS-29">29 </A>
Kokin K.
Iitake K.-I.
Takaguchi Y.
Aoyama H.
Hayashi S.
Motoyoshiya J.
Phosphorus, Sulfur Silicon Relat. Elem.
1998,
133:
21
<A NAME="RT08706SS-30">30 </A> Methyl 2-(tert -butyldimethylsiloxy)-2-(dimethoxyphosphoryl)acetate, upon deprotonation with LDA
in pure THF, and 4-methoxy-2-(methoxymethoxy)benzaldehyde condense with seemingly
perfect Z /E selectivity:
Boehlow TR.
Harburn JJ.
Spilling CD.
J. Org. Chem.
2001,
66:
3111
<A NAME="RT08706SS-31A">31a </A>
Nagaoka H.
Kishi Y.
Tetrahedron
1981,
37:
3873
<A NAME="RT08706SS-31B">31b </A> Related finding:
Boschelli D.
Takemasa T.
Nishitani Y.
Masamune S.
Tetrahedron Lett.
1985,
26:
5239
<A NAME="RT08706SS-32">32 </A>
Vogeli U.
von Philipsborn W.
Org. Magn. Reson.
1975,
7:
617
<A NAME="RT08706SS-33">33 </A>
In a related condensation using lithium diisopropylamide/ester 26 /dioxolanone 25c , we ascertained that the yield of pulvinone 28 decreased from 60% to 40% upon changing the reactant ratio from 2.5:2.5:1 to 2.5:1.25:1
(Scheme 4). The analogous condensation using lithium diisopropylamide/carboxylic acid
27 /dioxolanone 25c (2.2:1.1:1 ratio of the reactants) did not give pulvinone 28 under the conditions otherwise identical to those of Table 5 (Kaczybura, N. Dissertation; Universität Freiburg: Germany, 2005).
Scheme 4
<A NAME="RT08706SS-34">34 </A> Earlier description of pulvinone (Z )-8f :
Ojima N.
Takenaka S.
Seto S.
Phytochemistry
1973,
12:
2527
<A NAME="RT08706SS-35">35 </A> Pulvinone (Z )-8j was synthesized in a mixture which also contained the isomeric pulvinone (Z )-5-(3,4-dimethoxy-benzylidene)-4-hydroxy-3-(4-methoxyphenyl)furan-2(5H )-one:
Edwards RL.
Gill M.
J. Chem. Soc., Perkin Trans. 1
1973,
1921
<A NAME="RT08706SS-36">36 </A>
We could not extend our approach to a synthesis of pulvinic acids 32 and 33 . While dioxolanone 31 was accessible by a Horner-Wadsworth-Emmons reaction between phosphonate 24b and α-oxo ester 29 (79% yield), it did not react with the ester enolate 30 by Claisen condensation/transesterification (Scheme 5).
Scheme 5 Reagents and conditions : a) 24b (1.0 equiv), LDA (1.7 equiv), THF, -78 °C, 30 min; 29 , 2.5 h; 79% (60:40 mixture of unassigned isomers); (b1 ) 30 (2.5 equiv), THF, -78 °C, 2 h, to r.t., 0-2 h; (b2 ) evaporation of THF; addition of Et2 O-H2 O (1:1), 60 °C, 1 h.