Dtsch Med Wochenschr 2006; 131(39): 2169-2175
DOI: 10.1055/s-2006-951349
Übersicht | Review article
Kardiologie
© Georg Thieme Verlag KG Stuttgart · New York

Ischämische Prä- und Postkonditionierung

Ischemic pre- and postconditioningG. Heusch1 , R. Schulz1
  • 1Institut für Pathophysiologie, Universitätsklinikum Essen
Further Information

Publication History

eingereicht: 17.3.2006

akzeptiert: 7.6.2006

Publication Date:
22 September 2006 (online)

Zusammenfassung

Ein oder mehrere kurze Zyklen von Ischämie/Reperfusion kurz vor (Präkonditionierung) oder nach (Postkonditionierung) einem längerdauernden Koronarverschluss mit anschließender Reperfusion reduzieren die Infarktgröße. Die protektive Wirkung ist potent, aber auf einen engen zeitlichen Rahmen beschränkt. Im Experiment wurde eine komplexe Signaltransduktionskaskade identifiziert, die letztlich spezifisch den Reperfusionsschaden reduziert. Belege für ischämische Prä- und Postkonditionierung gibt es auch bei Patienten mit koronarer Herzkrankheit.

Summary

One or several short cycles of ischemia/reperfusion before (preconditioning) or after (postconditioning) a sustained coronary occlusion with subsequent reperfusion reduce the ultimate infarct size. The protection is potent, but limited to a narrow time frame. In animal experiments a complex signal transduction cascade was identified which results specifically in a reduction of reperfusion injury. There is evidence for both ischemic pre-and postconditioning in patients with coronary artery disease.

Literatur

  • 1 Abdallah Y, Gkatzoflia A, Pieper H. et al . Mechanism of cGMP -mediated protection in a cellular model of myocardial reperfusion injury.  Cardiovasc Res. 2005;  66 123-131
  • 2 Billinger M, Fleisch M, Eberli F R, Garachemani A, Meier B, Seiler C. Is the development of myocardial tolerance to repeated ischemia in humans due to preconditioning or to collateral recruitment?.  J Am Coll Cardiol. 1999;  33 1027-1035
  • 3 Bolli R. The late phase of preconditioning.  Circ Res. 2000;  87 972-983
  • 4 Bolli R, Dawn B, Tang X -L. et al . The nitric oxide hypothesis of late preconditioning.  Basic Res Cardiol. 1998;  93 325-338
  • 5 Bopassa J -C, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning.  Cardiovasc Res. 2006;  69 178-185
  • 6 Deutsch E, Berger M, Kussmaul W G, Hirshfeld J W, Herrmann H C, Laskey W K. Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features.  Circulation. 1990;  82 2044-2051
  • 7 Di Lisa F, Canton M, Menabó R, Dodoni G, Bernardi P. Mitochondria and reperfusion injury. The role of permeability transition.  Basic Res Cardiol. 2003;  98 235-241
  • 8 Diaz R J, Armstrong S C, Batthish M, Backx P H, Ganote C E, Wilson G J. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes.  J Mol Cell Cardiol. 2003;  35 45-58
  • 9 Downey J M, Cohen M V. We think we see a pattern emerging here.  Circulation. 2005;  111 120-121
  • 10 Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Agulló L, Cabestrero A. The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion.  Cardiovasc Res. 2006;  70 274-285
  • 11 Hausenloy D J, Mocanu M M, Yellon D M. Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning.  Cardiovasc Res. 2004;  63 305-312
  • 12 Hausenloy D J, Tsang A, Yellon D M. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning.  Trends Cardiovasc Med. 2005;  15 69-75
  • 13 Heidland U E, Heintzen M P, Michel C J, Strauer B E. Effect of adjunctive intracoronary adenosine on myocardial ischemia, hemodynamic function and left ventricular performance during percutaneous transluminal coronary angioplasty: clinical access to ischemic preconditioning?.  Coron Art Dis. 2000;  11 421-428
  • 14 Heinzel F R, Luo Y, Li X. et al . Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice.  Circ Res. 2005;  97 583-586
  • 15 Heusch G. Nitroglycerin and delayed preconditioning in humans: Yet another new mechanism for an old drug?.  Circulation. 2001;  103 2876-2878
  • 16 Heusch G. Postconditioning. Old wine in a new bottle?.  J Am Coll Cardiol. 2004a;  44 1111-1112
  • 17 Heusch G. Postconditioning. Old wine in a new bottle?.  J Am Coll Cardiol. 2004b;  44 1111-1112
  • 18 Heusch G, Cohen M V, Downey J M. Ischemic preconditioning through opening of swelling-activated chloride channels?.  Circ Res. 2001;  89 e48
  • 19 Heusch G, Schulz R. Remote Preconditioning.  J Mol Cell Cardiol. 2002;  34 1279-1281
  • 20 Inserte J, Garcia-Dorado D, Ruiz-Maena M, Agulló J, Pina P, Soler-Soler J. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism.  Cardiovasc Res. 2004;  64 105-114
  • 21 Jenkins D P, Pugsley W B, Alkhulaifi A M, Kemp M, Hooper J, Yellon D M. Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery.  Heart. 1997;  77 314-318
  • 22 Juhaszova M, Zorov D B, Kim S -H. et al . Glycogen synthase kinase-3ß mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore.  J Clin Invest. 2004;  113 1535-1549
  • 23 Kerendi F, Kin H, Halkos M E. et al . Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adeadenosine adenosine receptors.  Basic Res Cardiol. 2005;  100 404-412
  • 24 Kin H, Zhao Z -Q, Sun H -Y. et al . Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion.  Cardiovasc Res. 2004;  62 74-85
  • 25 Kloner R A, Shook T, Przyklenk K. et al . Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?.  Circulation. 1995;  91 37-47
  • 26 Laskey W K. Beneficial impact of preconditioning during PTCA on creatine kinase release.  Circulation. 1999;  99 2085-2089
  • 27 Leesar M A, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning in human myocardium with adenosine during coronary angioplasty.  Circulation. 1997;  95 2500-2507
  • 28 Leesar M A, Stoddard M F, Dawn B, Jasti V G, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty.  Circulation. 2001;  103 2935-2941
  • 29 Leesar M A, Stoddard M F, Manchikalapudi S, Bolli R. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty.  J Am Coll Cardiol. 1999;  34 639-650
  • 30 Li X, Heinzel F R, Boengler K, Schulz R, Heusch G. Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions.  J Mol Cell Cardiol. 2004;  36 161-163
  • 31 Marber M S, Latchman D S, Walker J M, Yellon D M. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction.  Circulation. 1993;  88 1264-1272
  • 32 Meier J J, Gallwitz B, Schmidt W E, Mügge A, Nauck M A. Is impairment of ischaemic preconditioning by sulfonylurea drugs clinically important ?.  Heart. 2004;  90 9-12
  • 33 Murry C E, Jennings R B, Reimer K A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation. 1986;  74 1124-1136
  • 34 Nakagawa Y, Ito H, Kitakaze M. et al . Effect of angina pectoris on myocardial protection in patients with reperfused anterior wall myocardial infarction: retrospective clinical evidence of „preconditioning”.  J Am Coll Cardiol. 1995;  25 1076-1083
  • 35 Ottani F, Galvani M, Ferrini D. et al . Prodromal angina limits infarct size. A role for ischemic preconditioning.  Circulation. 1995;  91 291-297
  • 36 Pain T, Yang X -M, Critz S D. et al . Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals.  Circ Res. 2000;  87 460-466
  • 37 Penna C, Rastaldo R, Mancardi D. et al . Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation.  Basic Res Cardiol. 2006;  101 180-189
  • 38 Piper H M, Meuter K, Schäfer C. Cellular mechanisms of ischemia-reperfusion injury.  Ann Thorac Surg. 2003;  75 S644-S648
  • 39 Reimer K A, Jennings R B, Cobb F R. et al . Animal models for protecting ischemic myocardium: results of the NHLBI cooperative study. Comparison of unconscious and conscious dog models.  Circ Res. 1985;  56 651-665
  • 40 Schaper W, Görge G, Winkler B, Schaper J. The collateral circulation of the heart.  Prog Cardiovasc Dis. 1988;  31 57-77
  • 41 Schulz R, Cohen M V, Behrends M, Downey J M, Heusch G. Signal transduction of ischemic preconditioning.  Cardiovasc Res. 2001;  52 181-198
  • 42 Schulz R, Gres P, Skyschally A. et al . Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo.  Faseb J. 2003;  17 1355-1357
  • 43 Staat P, Rioufol G, Piot C. et al . Postconditioning the human heart.  Circulation. 2005;  112 2143-2148
  • 44 Tomai F, Crea F, Gaspardone A. et al . Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker.  Circulation. 1994;  90 700-705
  • 45 Tomai F, Crea F, Gaspardone A. et al . Effects of naloxone on myocardial ischemic preconditioning in humans.  J Am Coll Cardiol. 1999;  33 1863-1869
  • 46 Tsang A, Hausenloy D J, Yellon D M. Myocardial postconditioning: reperfusion injury revisited.  Am J Physiol Heart Circ Physiol. 2005;  289 H2-H7
  • 47 Valen G, Vaage J. Pre- and postconditioning during cardiac surgery.  Basic Res Cardiol. 2005;  100 179-186
  • 48 Vinten-Johansen J, Yellon D M, Opie L H. Postconditioning. A simple, clinically applicable procedure to improve revascularization in acute myocardial infarction.  Circulation. 2005;  112 2085-2088
  • 49 Vinten-Johansen J, Zhao Z -Q, Zatta A J, Kin H, Halkos M E, Kerendi F. Postconditioning. A new link in nature’s armor against myocardial ischemia-reperfusion injury.  Basic Res Cardiol. 2005;  295 295-310
  • 50 Yamashita N, Hoshida S, Otsu K, Asahi M, Kuzuya T, Hori M. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation.  J Exp Med. 1999;  189 1699-1706
  • 51 Yang X -M, Philipp S, Downey J M, Cohen M V. Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation.  Basic Res Cardiol. 2005;  100 57-63
  • 52 Yang X -M, Proctor J B, Cui L, Krieg T, Downey J M, Cohen M V. Multiple, brief coronary occlusions during early reperfusion protect hearts by targeting cell signaling pathways.  J Am Coll Cardiol. 2004;  44 1103-1110
  • 53 Yellon D M, Alkhulaifi A M, Pugsley W B. Preconditioning the human myocardium.  Lancet. 1993;  342 276-277
  • 54 Yellon D M, Downey J M. Preconditioning the myocardium: From cellular physiology to clinical cardiology.  Physiol Rev. 2003;  83 1113-1151
  • 55 Zhao Z -Q, Corvera J S, Halkos M E. et al . Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning.  Am J Physiol Heart Circ Physiol. 2003;  285 H579-H588

Prof. Dr. med. Dr. h. c. Gerd Heusch

Direktor des Instituts für Pathophysiologie, Zentrum für Innere Medizin, Universitätsklinikum Essen

Hufelandstraße 55

45122 Essen

Email: gerd.heusch@uni-essen.de

    >