References and Notes
For some leading references, see:
<A NAME="RG23706ST-1A">1a</A>
Reck F.
Zhou F.
Girardot M.
Kern G.
Eyermann CJ.
Hales NJ.
Ramsay RR.
Gravestock MB.
J. Med. Chem.
2005,
48:
499
<A NAME="RG23706ST-1B">1b</A>
Barbachyn MR.
Ford CW.
Angew. Chem. Int. Ed.
2003,
42:
2010 ; Angew. Chem. 2003, 115, 2056
<A NAME="RG23706ST-1C">1c</A>
Kakeya H.
Morishita M.
Koshino H.
Morita T.
Kobayashi K.
Osada H.
J. Org. Chem.
1999,
64:
1052
<A NAME="RG23706ST-2A">2a</A>
Ager DJ.
Prakash I.
Schaad DR.
Chem. Rev.
1996,
96:
835
<A NAME="RG23706ST-2B">2b</A>
Gage JR.
Evans DA.
Org. Synth.
1990,
68:
83 ; Org. Synth., Coll. Vol. VIII; Wiley: New York, 1993, 339
<A NAME="RG23706ST-2C">2c</A>
Evans DA.
Johnson JS. In
Comprehensive Asymmetric Catalysis
Vol. III:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin, Heidelberg:
1999.
p.1177
<A NAME="RG23706ST-3">3</A>
Shibata I.
Kato H.
Kanazawa N.
Yasuda M.
Baba A.
J. Am. Chem. Soc.
2004,
126:
466
<A NAME="RG23706ST-4A">4a</A>
Shachat N.
Bagnell J.
J. Org. Chem.
1963,
28:
991
<A NAME="RG23706ST-4B">4b</A>
Stoffel PJ.
Speziale AJ.
J. Org. Chem.
1963,
28:
2814
<A NAME="RG23706ST-5">5</A>
Müller TE.
Beller M.
Chem. Rev.
1998,
98:
675
<A NAME="RG23706ST-6A">6a</A>
Kimura M.
Kure S.
Yoshida Z.
Tanaka S.
Fugami K.
Tamaru Y.
Tetrahedron Lett.
1990,
31:
4887
<A NAME="RG23706ST-6B">6b</A>
Tamaru Y.
Kimura M.
Tanaka S.
Kure S.
Yoshida Z.
Bull. Chem. Soc. Jpn.
1994,
67:
2383
<A NAME="RG23706ST-6C">6c</A>
Ohe K.
Matsuda H.
Ishihara T.
Chatani N.
Kawasaki Y.
Murai S.
J. Org. Chem.
1991,
56:
2267
<A NAME="RG23706ST-6D">6d</A> For a related Pd-catalyzed transformation, see:
Lei A.
Lu X.
Org. Lett.
2000,
2:
2699
For recent reviews on Au-catalysis, see:
<A NAME="RG23706ST-7A">7a</A>
Hashmi ASK.
Gold Bull.
2004,
37:
51
<A NAME="RG23706ST-7B">7b</A>
Hashmi ASK.
Angew. Chem. Int. Ed.
2004,
44:
6990 ; Angew. Chem. 2005, 117, 7150
<A NAME="RG23706ST-7C">7c</A>
Hoffmann-Röder A.
Krause N.
Org. Biomol. Chem.
2005,
3:
387
<A NAME="RG23706ST-8A">8a</A>
Mizushima E.
Hayashi T.
Tanaka M.
Org. Lett.
2003,
5:
3349
<A NAME="RG23706ST-8B">8b</A>
Alfonsi M.
Arcadi A.
Aschi M.
Bianchi G.
Marinelli F.
J. Org. Chem.
2005,
70:
2265
<A NAME="RG23706ST-8C">8c</A>
Gorin DJ.
Davis NR.
Toste D.
J. Am. Chem. Soc.
2005,
127:
11260
<A NAME="RG23706ST-9">9</A>
Braunstein P.
Lehner H.
Matt D.
Inorg. Synth.
1990,
27:
218
For the Au(III)-catalyzed intramolecular hydroamination of simple aminoalkynes, see:
<A NAME="RG23706ST-10A">10a</A>
Fukuda Y.
Utimoto K.
Nozaki H.
Heterocycles
1987,
25:
297
<A NAME="RG23706ST-10B">10b</A>
Fukuda Y.
Utimoto K.
Synthesis
1991,
975
<A NAME="RG23706ST-10C">10c</A> For the first use of AuCl3 in homogeneous catalysis, see:
Hashmi ASK.
Schwarz L.
Choi J.-H.
Frost TM.
Angew. Chem. Int. Ed.
2000,
39:
2285 ; Angew. Chem. 2000, 112, 2382
<A NAME="RG23706ST-11">11</A>
Crystal data for compound 9a: colorless crystals (from cyclohexane); mp 87-88 °C; C16H19NO4S, FW = 321.10, triclinic, space group P-1; a = 7.2854 (2) Å, b = 8.7222 (3) Å, c = 12.7763 (4) Å; α = 96.866 (2)°, β = 100.075 (2)°, γ = 99.598 (2)°; V = 778.85 (4) Å3; Z = 2; d
calc = 1.370 g/cm3; R = 0.0391, R
w = 0.0837 for 2517 reflections having I > 2σ(I). Further crystallographic data have
been deposited at the Cambridge Crystallographic Data Centre. Copies of the data (CCDC
613241) can be obtained free of charge from CCDC, 12 Union Road, Cambridge CB2 1EZ,
UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
<A NAME="RG23706ST-12">12</A> Such a mechanism was previously proposed for a related gold-catalyzed transformation
(oxazole synthesis):
Hashmi ASK.
Weyrauch JP.
Frey W.
Bats JW.
Org. Lett.
2004,
6:
4391
<A NAME="RG23706ST-13">13</A>
General Procedure for the AuCl-Catalyzed Cyclization of O
-Propargyl Carbamates: To a solution of an O-propargyl carbamate (6 or 8a-8f; 0.5 mmol) and a base co-catalyst (0.025 mol, 5 mol%) in solvent (2 mL) was added
AuCl (0.025 mol, 5 mol%). The mixture was stirred at r.t. or 60 °C for the time specified
in Tables
[2]
and
[3]
. Conversion was monitored by TLC and/or GLC analyses. The reaction mixture was filtered
through a small pad of Celite® (elution with CH2Cl2). Removal of the solvent under reduced pressure and purification of the residue by
flash chromatog-raphy on SiO2 (cyclohexane-EtOAc, 3:1) afforded the products (7 or 9) as colorless oils or solids.
4-Methylene-3-(toluene-4-sulfonyl)-1-oxa-3-azaspiro[4.5]decan-2-one (
9a): 1H NMR (300 MHz, CDCl3): δ = 1.34-1.74 (m, 10 H), 2.41 (s, 3 H), 4.39 (d, 2
J = 3 Hz, 1 H, C=CH), 5.46 (d, 2
J = 3 Hz, 1 H, C=CH), 7.31 (d, 3
J = 8.3 Hz, 2 H), 7.89 (d, 3
J = 8.3 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.36 (t), 21.65 (q), 24.28 (t), 36.64 (t), 84.83 (s), 90.14 (t), 127.92 (d),
129.75 (d), 134.31 (s), 144.96 (s), 145.94 (s), 150.26 (s). IR (ATR): 1782 (ss, C=O),
1660 (s, C=C) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 321 [M+], 166 (14), 155 (24), 105 (12), 94 (23), 91 (100), 81 (16), 65 (33). HRMS (EI): m/z [M]+ calcd for 12C16H19
14N16O4
32S: 321.1035; found: 321.104.
(
Z
)-4-Ethylidene-3-tosyloxazolidin-2-one (
9b): 1H NMR (250 MHz, CDCl3): δ = 1.85 (td, 5
J = 1.8 Hz, 3
J = 7.36 Hz, 3 H, CH3), 2.42 (s, 3 H), 4.62 (app pent, 2 H,), 5.24 (tq, 4
J = 1.8 Hz, 3
J = 7.4 Hz, 1 H), 7.33 (d, 3
J = 8 Hz, 2 H), 7.92 (d, 3
J = 8 Hz, 2 H). Characteristic signals of the minor isomer iso-9b: 1H NMR (250 MHz, CDCl3): δ = 4.56 (dt, 5
J
t = 1 Hz, 3
J
d = 6 Hz, 2 H), 5.43 (tq, 4
J
q = 1 Hz, 3
J
t = 5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.63 (q), 21.75 (q), 70.14 (t), 112.43 (q), 128.28 (d), 129.87 (d), 135.4
(s), 138.84 (s), 145.77 (s), 153.54 (s, C=O). IR (ATR): 2923 (w, C=CCH3), 1782 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 267 [M+], 155 (34), 112 (11), 95 (32), 91 (100), 65 (23), 57 (44). HRMS (EI): m/z [M]+ calcd for 12C12H13
14N16O4
32S: 267.0565; found: 267.056.
(
Z
)-4-Benzylidene-3-(toluene-4-sulfonyl)oxazolidin-2-one (
9c): 1H NMR (250 MHz, CDCl3): δ = 2.42 (s, 3 H), 4.82 (d, 4
J = 2 Hz, 2 H), 6.15 (t, 4
J = 2 Hz, 1 H), 7.25-7.31 (m, 7 H), 7.68 (d, 3
J = 8.5 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.71 (q), 70.28 (t), 115.87 (d), 127.13 (s), 127.79 (d), 128.48 (d), 128.54
(d), 129.57 (d), 134.49 (s), 134.80 (s), 145.76 (s), 153.90 (s, C=O). IR (ATR): 3058
(w, C=CR), 1788 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 329 [M+], 174 (12), 155 (33), 130 (68), 103 (25), 91 (100), 77 (26), 65 (31), 51 (9). HRMS
(EI): m/z [M]+ calcd for 12C17H15
14N16O4
32S: 321.0721; found: 321.072.
4-Methylene-3-phenyloxazolidin-2-one (
9d): 1H NMR (250 MHz, CDCl3): δ = 4.12 (d, 2
J = 2.5 Hz, 1 H, C=CH), 4.21 (d, 2
J = 2.5 Hz, 1 H, C=CH), 5.01 (t, 2
J = 2 Hz, 2 H), 7.30-7.46 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 67.10 (t), 82.00 (t), 126.91 (d), 128.94 (d), 129.15 (d), 133.55 (s), 141.72
(s), 155.97 (s, C=O). IR (ATR): 1757 (ss, C=O), 1680 (s, C=CH) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 175 [M+], 130 (100), 103 (56), 91 (8), 77 (68), 63 (10), 51 (46). HRMS (EI): m/z [M]+ calcd for 12C10H9
14N16O2: 175.0633; found: 175.063.
(
Z
)-4-Ethylidene-3-phenyloxazolidin-2-one (
9e): 1H NMR (250 MHz, CDCl3): δ = 1.06 (td, 5
J = 2.3 Hz, 3
J = 7.3 Hz, 3 H), 4.47 (tq, 4
J = 2.3 Hz, 3
J = 7.3 Hz, 1 H), 4.91 (m, 2 H), 7.30-7.43 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 10.43 (q), 66.06 (t), 93.17 (d), 127.09 (d), 127.17 (d), 128.21 (d), 128.59
(d), 129.55 (d), 129.87 (d), 130.59 (s), 135.16 (s). IR (ATR): 1771 (ss, C=O), 1699
(s, C=CH) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 207 [M+], 189 (32), 149 (33), 132 (36), 119 (100), 104 (27), 91 (29), 84 (74), 77 (69), 57
(77), 49 (94). HRMS (EI): m/z [M]+ calcd for 12C11H11
14N16O2: 189.079; found: 189.079.
(
Z
)-4-Benzylidene-3-phenyloxazolidin-2-one (
9f): 1H NMR (300 MHz, CDCl3): δ = 5.10 (d, 4
J = 2.1 Hz, 2 H), 5.67 (s, 1 H), 6.63 (d, J = 1.7 Hz, 2 H), 6.81-6.90 (m, 3 H), 6.98-7.06 (m, 5 H). 13C NMR (75 MHz, CDCl3): δ = 68.03 (t), 99.89 (t), 125.88 (d), 126.96 (d), 128.12 (d), 128.16 (d), 128.68
(d), 129.74 (d), 132.27 (s), 132.83 (s), 134.60 (s), 156.95 (s, C=O). IR (ATR): 3053
(w, C=CR), 1769 (ss, C=O) cm-1. MS (DIP-EI, 70 eV): m/z (%) = 251 [M+], 206 (23), 104 (100), 89 (9), 77 (32), 63 (8), 51 (22). HRMS (EI): m/z [M]+ calcd for 12C16H13
14N16O2: 251.0946; found: 251.094.
<A NAME="RG23706ST-14">14</A> During the preparation of this manuscript, a method for the gold-catalyzed synthesis
of (isomeric) 3-alkylidene-2-oxazolidinones was reported, which nicely complements
the work described here:
Robles-Machin R.
Adrio J.
Carretero JC.
J. Org. Chem.
2006,
71:
5023