Horm Metab Res 2008; 40(1): 1-7
DOI: 10.1055/s-2007-1004554
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Thyroid Function and Body Weight Programming by Neonatal Hyperthyroidism in Rats - The Role of Leptin and Deiodinase Activities

E. G. Moura 1 , R. S. Santos 1 , P. C. Lisboa 1 , S. B. Alves 1 , I. T. Bonomo 1 , A. T. S. Fagundes 1 , E. Oliveira 1 , M. C. F. Passos 2
  • 1Department of Physiological Sciences, Biology Institute Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • 2Department of Applied Nutrition, Nutrition Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
Weitere Informationen

Publikationsverlauf

received 21.03.2007

accepted 05.06.2007

Publikationsdatum:
15. Januar 2008 (online)

Abstract

Several authors have shown that secondary hypothyroidism was programed by neonatal thyroxine (T4) treatment. However, the associated changes of body weight (BW) were less studied, especially those related to the body fat proportion. Here, we have evaluated the effect of neonatal thyroxine treatment on BW, fat proportion, serum leptin, and thyroid function of 60-day-old rats. Wistar rats were treated with thyroxine (50 μg/100 g BW, ip) (T) or saline (S), during the first 10 days of life. BW, nose-rump length (NRL), and food consumption were monitored for 60 days, when the animals were sacrificed. Thyroid function was evaluated by thyroid radioiodine uptake (RAIU), serum T3, T4, TSH, and liver mitochondrial alpha-glycerophosphate dehydrogenase (mGPD) and type 1 and 2 deiodinases (D1 and D2) activities, which are thyroid hormone-dependent enzymes. T animals showed lower food intake, BW and NRL, but higher total fat mass (+33%) and serum leptin (+46%). They also showed lower serum T3 (-23%), T4 (-32%), TSH (-36%), RAIU (-29%) and mGPD activity (-22%). Hypothalamic and pituitary D2 activities were higher (+24% and 1.4 fold, respectively), while brown adipose tissue (BAT) D2 and skeletal muscle D1 activities were lower (-30% and -62%, respectively). Thus, neonatal hyperthyroidism programs for a higher fat proportion and hyperleptinemia, which can explain the lower food intake. The TH-dependent enzymes activities changed accordingly, except for the decrease in BAT D2, which may be due the role played by the hyperleptinemia. Finally, the decrease in peripheral deiodination may contribute to a lower me-tabolic rate that may increase the adiposity.

References

  • 1 Moura EG, Passos MCF. Neonatal programming of body weight regulation and energetic metabolism.  Biosci Rep. 2005;  25 251-269
  • 2 Passos MCF, Ramos CF, Dutra SCP, Mouço T, Moura EG. Long-term effects of malnutrition during lactation on the thyroid function of offspring.  Horm Metab Res. 2002;  34 40-43
  • 3 Picarel-Blanchot F, Alvarez C, Bailbe D, Pascual-Leone AM, Portha B. Changes in insulin action and insulin secretion in the rat after dietary restriction early in life: influence of food restriction versus low-protein food restriction.  Metabolism. 1995;  44 1519-1526
  • 4 Vicente LL, Moura EG, Lisboa PC, Costa AMA, Amadeu T, Mandarim-de-Lacerda CA, Passos MCF. Malnutrition during lactation is associated with higher expression of leptin receptor in pituitary of the adult offspring.  Nutrition. 2004;  20 924-928
  • 5 Passos MCF, Vicente LL, Lisboa PC, Moura EG. Absence of anorectic effect to acute peripheral leptin treatment in adult animals whose mothers were malnourished during lactation.  Horm Metab Res. 2004;  36 625-629
  • 6 Walker P, Courtin F. Transient neonatal hyperthyroidism results in hypothyroidism in the adult rat.  Endocrinology. 1985;  116 2246-2250
  • 7 Pracyck JB, Seidler FJ, MacCook EC, Slotkin TA. Pituitary-thyroid axis reactivity to hyper- and hypothyroidism in the perinatal period: ontogeny of regulation and long term programming of responses.  J Dev Physiol. 1992;  18 105-109
  • 8 Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppresion of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus.  Endocrinology. 1997;  138 2569-2576
  • 9 Seoane LM, Carro E, Tovar S, Casanueva FF, Dieguez C. Regulation of in vivo TSH secretion by leptin.  Regul Pept. 2000;  92 25-29
  • 10 Ortiga-Carvalho TM, Oliveira KJ, Soares BA, Pazos-Moura CC. Leptin role in the regulation of thyrotropin secretion in fed state - in vivo and in vitro studies.  J Endocrinol. 2002;  174 121-125
  • 11 Nowak K W, Kaczmarek P, Mackowiak P, Ziólkowska A, Albertin G, Ginda WJ, Trejter M, Nussdorfer GG, Malendowicz LK. Rat thyroid gland express the long form of leptin receptors, and leptin stimulates the function of the gland in euthyroid non-fasted animals.  Int J Mol Med. 2002;  9 31-34
  • 12 Cusin I, Rouru J, Visser T, Burger AG, Rohner-Jeanrenaud F. Involvement of thyroid hormones in the effect of intracerebroventricular leptin infusion on uncoupling protein-3 expression in rat muscle.  Diabetes. 2000;  49 1101-1105
  • 13 Lisboa PC, Curty FH, Moreira RM, Oliveira KJ, Pazos-Moura CC. Sex steroids modulate rat anterior pituitary and liver iodothyronine deiodinase activities.  Horm Metab Res. 2001;  33 532-535
  • 14 Lisboa PC, Oliveira KJ, Cabanelas A, Ortiga-Carvalho TA, Pazos-Moura CC. 5′-deiodinase activity, acute cold exposure, leptin, and somatostatin analog (octreotide) modulate thyroid.  Am J Physiol Endocrinol Metab. 2003;  284 E1172-E1176
  • 15 Cabanelas A, Lisboa PC, Moura EG, Pazos-Moura CC. Leptin acute modulation of the 5′-deiodinase activities in hypothalamus, pituitary and brown adipose tissue of fed rats.  Horm Metab Res. 2006;  38 481-485
  • 16 Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action.  J Clin Invest. 2006;  116 2571-2579
  • 17 Lee YP, Lardy HA. Influence of thyroid hormones on L-GPD and other dehydrogenases in various organs of the rat.  J Biol Chem. 1965;  240 1427-1436
  • 18 Müller S, Seitz HJ. Cloning of a cDNA for the FAD-linked glycerol-3-phosphate dehydrogenase from rat liver and its regulation by thyroid hormones.  Proc Natl Acad Sci USA. 1994;  25 10581-10585
  • 19 Gong DW, Bi S, Weintraub BD, Reitman M. Rat mitochondrial glycerol-3-phosphate dehydrogenase gene: multiple promoters, high levels in brown adipose tissue, and tissue-specific regulation by thyroid hormone.  DNA Cell Biol. 1998;  17 301-309
  • 20 DosSantos RA, Alfadda A, Eto K, Kadowaki T, Silva JE. Evidence for a compensated thermogenic defect in transgenic mice lacking the mitochondrial glycerol-3-phosphate dehydrogenase gene.  Endocrinology. 2003;  144 5469-5479
  • 21 Koza RA, Kozak UC, Brown LJ, Leiter EIL, MacDonald MJ, Kozak LP. Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase.  Arch Biochem Biophys. 1996;  336 97-104
  • 22 Dowson AG. Effects of phenacetin on respiration in mitochondria isolated from rat kidney, liver and brain.  Biochem Pharmacol. 1979;  15 3669-3671
  • 23 Fishbeck KL, Rasmussen KM. Effect of repeated cycles on maternal nutritional status, lactational performance and litter growth in ad libitum-fed and chronically food-restricted rats.  J Nutr. 1987;  117 1967-1975
  • 24 Bayne K. Revised guide for the care and use of laboratory animals available.  Am Physiol Soc. 1996;  39 208-211
  • 25 Stansbie D, Browsey RW, Crettaz M, Demton RM. Acute effects in vivo of anti-insulin serum on rates of acids synthesis and activities of acetyl-coenzyme A carboxilase and pyruvate dehydrogenase in liver and epididymal adipose tissue of fed rats.  Biochem J. 1976;  160 413-416
  • 26 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 27 Berry MJ, Kieffer JD, Larsen PR. Evidence that cysteine, not selenocysteine, is the catalytic site of type II deiodinase.  Endocrinology. 1991;  129 550-552
  • 28 Pazos-Moura CC, Moura EG, Dorris ML, Rehnmark S, Melendez L, Silva JE, Taurog A. Effect of iodine deficiency and cold exposure on thyroxine 5′-deiodinase activity in various rat tissues.  Am J Physiol. 1991;  260 E175-E182
  • 29 Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 30 Bernal J, Coleoni AH, DeGroot LJ. Triiodothyronine stimulation of nuclear protein synthesis.  Endocrinology. 1978;  102 452-459
  • 31 Recupero AR, Coleoni AH, Cherubini O, Oviedo A. Selective alterations in hepatic nuclear T3-receptors and enzyme responses by glucocorticoid deficit or excess.  Acta Endocrinol (Copenh). 1983;  104 485-489
  • 32 Dussault JH, Coulombe P, Walker P. Effects of neonatal hyperthyroidism on the development of the hypothalamic-pituitary-thyroid axis in the rat.  Endocrinology. 1982;  110 1037-1042
  • 33 Porterfield SP. Prenatal exposure of the fetal rat to excessive l-thyroxine or 3,5-dimethyl-3-isopropylthyronine produces persistent changes in the thyroid control system.  Horm Metab Res. 1985;  17 655-659
  • 34 Wilcoxon JS, Redei EE. Prenatal programming of adult thyroid function by alcohol and thyroid hormones.  Am J Physiol Endocrinol Metab. 2004;  287 E318-E326
  • 35 Walker P. Neonatal hyperthyroidism alters submandibular gland epidermal growth factor response to thyroxine in the adult mouse.  Can J Physiol Pharmacol. 1985;  63 1151-1154
  • 36 O’Shea PJ, Harvey CB, Suzuki H, Kaneshige M, Kaneshige K, Cheng SY, Williams GR. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone.  Mol Endocrinol. 2003;  17 1410-1424
  • 37 Moura EG, Ramos CF, Nascimento CCA, Rosenthal D, Breitenbach MMD. Thyroid function in fasting rats: variations in 131I uptake and transient decrease in peroxidase activity.  Braz J Med Biol Res. 1987;  20 407-410
  • 38 Harris ARC, Fang SL, Vagenakis AG, Braverman LE. Effect of starvation, nutrient replacement and hypothyroidism on in vitro hepatic T4 to T3 conversion in the rat.  Metabolism. 1978;  27 1680-1690
  • 39 Chopra IJ. Alterations in monodeiodination of iodothyronine in the fasting rat. Effect of reduced nonprotein sulfhydryl groups and hypothyroidism.  Metabolism. 1980;  29 161-167
  • 40 Volpato CB, Nunes MT. Role of thyroid hormone in the control of growth hormone gene expression.  Braz J Med Biol Res. 1994;  27 1269-1272
  • 41 Pellizas CG Coleoni AH, Costamagna ME, DI Fulvio M, Masini-Repiso AM. Insulin-like growth factor I reduces thyroid hormone receptors in the rat liver. Evidence for a feed-back loop regulating the peripheral thyroid hormone action.  J Endocrinol. 1998;  158 87-95
  • 42 Escobar-Morreale HF, Escobar Del Rey F, Morreale Escobar G De. Thyroid hormones influence serum leptin concentrations in the rat.  Endocrinology. 1997;  138 4485-4488
  • 43 Medina-Gomez G, Calvo RM, Obregon MJ. T3 and Triac inhibit leptin secretion and expression in brown and white rat adipocytes.  Biochim Biophy Acta. 2004;  1682 38-47
  • 44 Diano S, Naftolin F, Goglia F, Horvath TL. Fasting-induced increase in type 2 iodothyronine deiodinase activity and messenger ribonucleic acid level is not reversed by thyroxine in the rat hypothalamus.  Endocrinology. 1998;  139 2879-2884
  • 45 Coppola A, Meli R, Diano S. Inverse shift in circulating corticosterone and leptin levels elevates hypothalamic deiodinase type 2 in fasted rats.  Endocrinology. 2005;  146 2827-2833
  • 46 Croteau W, Jennifer C, Davey JC, Valerie Anne Galton VA, St Germain DS. cloning of the mammalian type II iodothyronine deiodinase a selenoprotein differentially expressed and regulated in human and rat brain and other tissues.  J Clin Invest. 1996;  98 405-417
  • 47 Martinez-deMena R, Hernández A, Obregón MJ. Triiodothyronine is required for the stimulation of type II 5'-deiodinase mRNA in rat brown adipocytes.  Am J Physiol Endocrinol Metab. 2002;  282 1119-1127
  • 48 Silva JE, Larsen PR. Interrelationships among Thyroxine, Growth Hormone, and the Sympathetic Nervous System in the Regulation of 5′-lodothyronine Deiodinase in Rat Brown Adipose Tissue.  J Clin Invest. 1986;  77 1214-1223
  • 49 Teixeira CV, Ramos CDF, Mouço T, Passos MCF, Moura EG. Leptin injection during lactation alters thyroid function in adult rats.  Horm Metab Res. 2003;  35 367-371
  • 50 Toste FP, Alves SB, Dutra SCP, Bonomo IT, Lisboa PC, Moura EG, Passos MCF. Temporal evaluation of the thyroid function of rats programmed by leptin treatment on the neonatal period.  Horm Metab Res. 2006;  38 827-831
  • 51 de Oliveira Cravo C, Teixeira CV, Passos MC, Dutra SC, Moura EG, Ramos C. Leptin treatment during the neonatal period is associated with higher food intake and adult body weight in rats.  Horm Metab Res. 2002;  34 400-405

Correspondence

Dr. E.G. Moura

Departamento de Ciências Fisiológicas - 5o andar

Instituto de Biologia

Universidade do Estado do Rio de Janeiro

Av. 28 de setembro

87- Rio de Janeiro

20550-030 Brazil

Telefon: +55/21/2587 64 34

Fax: +55/21/2587 61 29

eMail: egberto@pq.cnpq.br

    >