Zusammenfassung
Hintergrund: Über 60 % der Schlaganfallpatienten behalten bleibende funktionelle Defizite, die
das berufliche und soziale Leben erheblich einschränken. Die Entwicklung wirksamer
neurorehabilitativer Therapiestrategien zielt darauf ab, die funktionelle Erholung
zu verbessern und damit die Lebensqualität nachhaltig zu steigern. Aus wissenschaftlichen
Untersuchungen bei gesunden Probanden ergeben sich zunehmend Hinweise darauf, dass
die nicht invasive kortikale Stimulation kognitive Leistungen steigern kann.
Ziel: Die Arbeit gibt einen Überblick über das Konzept der nicht invasiven kortikalen Stimulation
und die Darstellung der Methoden und deren Anwendung im Hinblick auf die Bedeutung
für die Schlaganfallrehabilitation.
Methode: Eine systematische Literaturrecherche wurde durchgeführt.
Ergebnisse: Erste Ergebnisse aus Studien mit kleiner Stichprobengröße sprechen dafür, dass eine
Kombination aus gezieltem motorischen Training und nicht invasiver kortikaler Stimulation
bei Schlaganfallpatienten zu vorübergehenden funktionellen Verbesserungen führen kann.
Schlussfolgerungen: Die nicht invasive kortikale Stimulation scheint eine Möglichkeit zu bieten, die
funktionelle Erholung zu verbessern. Sie könnte sich in naher Zukunft zu einer adjuvanten
Maßnahme in der neurologischen Rehabilitation entwickeln. Um diese innovative Strategie
in eine tägliche klinische Anwendung zu übersetzen, sind ein besseres Verständnis
der ihr zugrunde liegenden Mechanismen und ihre Evaluation in kontrollierten, multizentrischen
Studien notwendig.
Abstract
Background: Over 60 % of the stroke patients show persistent functional impairments that considerably
limit their occupational and social life. The development of effective therapeutic
strategies for neurorehabilitation aims at increasing functional recovery and subsequently
promoting quality of life in the long run. Recent studies in healthy subjects have
provided increasing evidence for non-invasive cortical stimulation to enhance cognitive
function.
Objective: This article gives an overview of the concept of non-invasive cortical stimulation
and outlines the methods and their application with regard to their relevance in stroke
rehabilitation.
Method: A systematic literature review was performed.
Results: First results of studies with stroke patients suggest that combining a specific motor
training with non-invasive cortical stimulation might transiently improve functional
outcome.
Conclusions: Non-invasive cortical stimulation appears to offer a promising option to enhance
functional recovery. It might provide an adjuvant intervention in neurorehabilitation
in the near future. For translation of this innovative strategy into routine clinical
practice it is necessary to get better insight into the underlying mechanisms and
to evaluate this therapeutic strategy with controlled multi-centre trials.
Schlüsselwörter
transkranielle Gleichstromstimulation - repetitive Transkranielle Magnetstimulation
- Schlaganfall - Rehabilitation
Key words
transcranial direct current stimulation - repetitive transcranial magnetic stimulation
- stroke - rehabilitation
Literatur
1
Adkins-Muir D L, Jones T A.
Cortical electrical stimulation combined with rehabilitative training: enhanced functional
recovery and dendritic plasticity following focal cortical ischemia in rats.
Neurol Res.
2003;
25
780-788
2
Anand S, Hotson J.
Transcranial magnetic stimulation: neurophysiological applications and safety.
Brain Cogn.
2002;
50
366-386
3
Antal A, Nitsche M A, Paulus W.
External modulation of visual perception in humans.
Neuroreport.
2001;
12
3553-3555
4
Antal A, Kincses T Z, Nitsche M A. et al .
Manipulation of phosphene thresholds by transcranial direct current stimulation in
man.
Exp Brain Res.
2003;
150
375-378
5
Antal A, Kincses T Z, Nitsche M A. et al .
Excitability changes induced in the human primary visual cortex by transcranial direct
current stimulation: direct electrophysiological evidence.
Invest Ophthalmol Vis Sci.
2004;
45
702-707
6
Antal A, Nitsche M A, Kincses T Z. et al .
Facilitation of visuo-motor learning by transcranial direct current stimulation of
the motor and extrastriate visual areas in humans.
Eur J Neurosci.
2004;
19
2888-2892
7
Antal A, Nitsche M A, Kruse W. et al .
Direct current stimulation over V5 enhances visuomotor coordination by improving motion
perception in humans.
J Cogn Neurosci.
2004;
16
521-527
8
Asanuma H, Keller A.
Neuronal mechanisms of motor learning in mammals.
Neuroreport.
1991;
2
217-224
9
Barbay S, Plautz E J, Friel K M. et al .
Behavioral and neurophysiological effects of delayed training following a small ischemic
infarct in primary motor cortex of squirrel monkeys.
Exp Brain Res.
2006;
169
106-116
10
Barker A T, Jalinous R, Freeston I L.
Non-invasive magnetic stimulation of human motor cortex.
Lancet.
1985;
1
1106-1107
11
Barker A T, Freeston I L, Jalinous R. et al .
Magnetic stimulation of the human brain and peripheral nervous system: an introduction
and the results of an initial clinical evaluation.
Neurosurgery.
1987;
20
100-109
12
Barker A T.
The history and basic principles of magnetic nerve stimulation.
Electroencephalogr Clin Neurophysiol (Suppl).
1999;
51
3-21
13
Barreca S, Wolf S L, Fasoli S. et al .
Treatment interventions for the paretic upper limb of stroke survivors: a critical
review.
Neurorehabil Neural Repair.
2003;
17
220-226
14 Berendes J. Discorides Pedanius De Materia Medica - Arzneimittellehre in 5 Büchern. Stuttgart;
Enke 1902
15
Bindman L J, Lippold O C, Redfearn J W.
The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) during
Current Flow and (2) in the Production of Long-Lasting After-effects.
J Physiol.
1964;
172
369-382
16
Boroojerdi B, Phipps M, Kopylev L. et al .
Enhancing analogic reasoning with rTMS over the left prefrontal cortex.
Neurology.
2001;
56
526-528
17
Brandt S A, Ploner C J, Meyer B U.
Repetitive transcranial magnetic stimulation. Possibilities, limits and safety aspects.
Nervenarzt.
1997;
68
778-784
18
Brouwer B J, Schryburt-Brown K.
Hand function and motor cortical output poststroke: are they related?.
Arch Phys Med Rehabil.
2006;
87
627-634
19
Brown J A, Lutsep H, Cramer S C. et al .
Motor cortex stimulation for enhancement of recovery after stroke: case report.
Neurol Res.
2003;
25
815-818
20
Brown J A, Lutsep H L, Weinand M. et al .
Motor cortex stimulation for the enhancement of recovery from stroke: a prospective,
multicenter safety study.
Neurosurgery.
2006;
58
464-473
21
Chen R, Classen J, Gerloff C. et al .
Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
Neurology.
1997;
48
1398-1403
22
Chen R.
Studies of human motor physiology with transcranial magnetic stimulation.
Muscle Nerve (Suppl).
2000;
9
S26-S32
23
Di Lazzaro V, Pilato F, Saturno E. et al .
Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory
circuits in the human motor cortex.
J Physiol.
2005;
565
945-950
24
Dong Y, Dobkin B H, Cen S Y. et al .
Motor cortex activation during treatment may predict therapeutic gains in paretic
hand function after stroke.
Stroke.
2006;
37
1552-1555
25
Duque J, Hummel F, Celnik P. et al .
Transcallosal inhibition in chronic subcortical stroke.
Neuroimage.
2005;
28
940-946
26
Filipovic S R, Siebner H R, Rowe J B. et al .
Modulation of cortical activity by repetitive transcranial magnetic stimulation (rTMS):
a review of functional imaging studies and the potential use in dystonia.
Adv Neurol.
2004;
94
45-52
27
Franzini A, Ferroli P, Dones I. et al .
Chronic motor cortex stimulation for movement disorders: a promising perspective.
Neurol Res.
2003;
25
123-126
28
Fregni F, Boggio P S, Mansur C G. et al .
Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.
Neuroreport.
2005;
16
1551-1555
29
Fregni F, Boggio P S, Valle A C. et al .
A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation
of the unaffected hemisphere in stroke patients.
Stroke.
2006;
37
2115-2122
30
Gandiga P C, Hummel F C, Cohen L G.
Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical
studies in brain stimulation.
Clin Neurophysiol.
2006;
117
845-850
31
Garcia-Larrea L, Peyron R, Mertens P. et al .
Positron emission tomography during motor cortex stimulation for pain control.
Stereotact Funct Neurosurg.
1997;
68
141-148
32
Gerloff C, Corwell B, Chen R. et al .
Stimulation over the human supplementary motor area interferes with the organization
of future elements in complex motor sequences.
Brain.
1997;
120
1587-1602
33
Gerloff C, Corwell B, Chen R. et al .
The role of the human motor cortex in the control of complex and simple finger movement
sequences.
Brain.
1998;
121
1695-1709
34
Grafman J, Pascual-Leone A, Alway D. et al .
Induction of a recall deficit by rapid-rate transcranial magnetic stimulation.
Neuroreport.
1994;
5
1157-1160
35
Hallett M.
Transcranial magnetic stimulation and the human brain.
Nature.
2000;
406
147-150
36
Hess G, Donoghue J P.
Long-term depression of horizontal connections in rat motor cortex.
Eur J Neurosci.
1996;
8
658-665
37
Hosobuchi Y.
Motor cortical stimulation for control of central deafferentation pain.
Adv Neurol.
1993;
63
215-217
38
Huang Y Z, Edwards M J, Rounis E. et al .
Theta burst stimulation of the human motor cortex.
Neuron.
2005;
45
201-206
39
Hummel F C, Celnik P, Giraux P. et al .
Effects of non-invasive cortical stimulation on skilled motor function in chronic
stroke.
Brain.
2005;
128
490-499
40
Hummel F C, Cohen L G.
Drivers of brain plasticity.
Curr Opin Neurol.
2005;
18
667-674
41
Hummel F C, Cohen L G.
Improvement of motor function with non-invasive cortical stimulation in a patient
with chronic stroke.
Neurorehabil Neural Repair.
2005;
19
14-19
42
Hummel F C, Cohen L G.
Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after
stroke?.
Lancet Neurol.
2006;
5
708-712
43
Hummel F C, Voller B, Celnik P. et al .
Effects of brain polarization on reaction times and pinch force in chronic stroke.
BMC Neurosci.
2006;
7
73
44
Iyer M B, Schleper N, Wassermann E M.
Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial
magnetic stimulation.
J Neurosci.
2003;
23
10 867-10 872
45
Iyer M B, Mattu U, Grafman J. et al .
Safety and cognitive effect of frontal DC brain polarization in healthy individuals.
Neurology.
2005;
64
872-875
46
Katayama Y, Fukaya C, Yamamoto T.
Poststroke pain control by chronic motor cortex stimulation: neurological characteristics
predicting a favorable response.
J Neurosurg.
1998;
89
585-591
47
Kellaway P.
The part played by the electric fish in the early history of bioelectricity and electrotherapy.
The William Osler Medal Essay.
Bull Hist Med.
1946;
20
112-137
48
Khedr E M, Ahmed M A, Fathy N. et al .
Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic
stroke.
Neurology.
2005;
65
466-468
49
Kim Y H, Park J W, Ko M H. et al .
Facilitative effect of high frequency subthreshold repetitive transcranial magnetic
stimulation on complex sequential motor learning in humans.
Neurosci Lett.
2004;
367
181-185
50
Kim Y H, You S H, Ko M H. et al .
Repetitive transcranial magnetic stimulation-induced corticomotor excitability and
associated motor skill acquisition in chronic stroke.
Stroke.
2006;
37
1471-1476
51
Kincses T Z, Antal A, Nitsche M A. et al .
Facilitation of probabilistic classification learning by transcranial direct current
stimulation of the prefrontal cortex in the human.
Neuropsychologia.
2004;
42
113-117
52
Kleim J A, Bruneau R, Vandenberg P. et al .
Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction
following ischemic insult.
Neurol Res.
2003;
25
789-793
53
Kobayashi M, Pascual-Leone A.
Transcranial magnetic stimulation in neurology.
Lancet Neurol.
2003;
2
145-156
54
Kobayashi M, Hutchinson S, Theoret H. et al .
Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.
Neurology.
2004;
62
91-98
55 Kolominsky-Rabas P. Schlaganfall in Deutschland. Anhaltszahlen zum Schlaganfall
aus dem Bevölkerungs-basierten Erlanger Schlaganfallregister im Rahmen der Gesundheitsberichterstattung
(GBE) des Bundes. Erlangen-Nürnberg; Interdisziplinäres Zentrum für Public Health
der Universität Erlangen-Nürnberg (IZPH) 2004
56
Kolominsky-Rabas P L, Heuschmann P U, Marschall D. et al .
Lifetime cost of ischemic stroke in Germany: results and national projections from
a population-based stroke registry: the Erlangen Stroke Project.
Stroke.
2006;
37
1179-1183
57
Kwakkel G, Peppen van R, Wagenaar R C. et al .
Effects of augmented exercise therapy time after stroke: a meta-analysis.
Stroke.
2004;
35
2529-2539
58
Lai S M, Studenski S, Duncan P W. et al .
Persisting consequences of stroke measured by the Stroke Impact Scale.
Stroke.
2002;
33
1840-1844
59
Lang N, Nitsche M A, Paulus W. et al .
Effects of transcranial direct current stimulation over the human motor cortex on
corticospinal and transcallosal excitability.
Exp Brain Res.
2004;
156
439-443
60
Liebetanz D, Nitsche M A, Tergau F. et al .
Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced
after-effects of human motor cortex excitability.
Brain.
2002;
125
2238-2247
61
Liebetanz D, Fregni F, Monte-Silva K K. et al .
After-effects of transcranial direct current stimulation (tDCS) on cortical spreading
depression.
Neurosci Lett.
2006;
398
85-90
62
Lotze M, Markert J, Sauseng P. et al .
The role of multiple contralesional motor areas for complex hand movements after internal
capsular lesion.
J Neurosci.
2006;
26
6096-6102
63
Machii K, Cohen D, Ramos-Estebanez C. et al .
Safety of rTMS to non-motor cortical areas in healthy participants and patients.
Clin Neurophysiol.
2006;
117
455-471
64 Mackay J, Mensah G. The Atlas of Heart Disease and Stroke. Geneva; World Health
Organisation 2004
65
Maeda F, Keenan J P, Tormos J M. et al .
Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.
Clin Neurophysiol.
2000;
111
800-805
66
Mansur C G, Fregni F, Boggio P S. et al .
A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke
patients.
Neurology.
2005;
64
1802-1904
67
Marshall L, Molle M, Hallschmid M. et al .
Transcranial direct current stimulation during sleep improves declarative memory.
J Neurosci.
2004;
24
9985-9992
68
Martin P I, Naeser M A, Theoret H. et al .
Transcranial magnetic stimulation as a complementary treatment for aphasia.
Semin Speech Lang.
2004;
25
181-191
69
Murase N, Duque J, Mazzocchio R. et al .
Influence of interhemispheric interactions on motor function in chronic stroke.
Ann Neurol.
2004;
55
400-409
70
Nguyen J P, Pollin B, Feve A. et al .
Improvement of action tremor by chronic cortical stimulation.
Mov Disord.
1998;
13
84-88
71
Nitsche M A, Paulus W.
Excitability changes induced in the human motor cortex by weak transcranial direct
current stimulation.
J Physiol.
2000;
527
633-639
72
Nitsche M A, Paulus W.
Sustained excitability elevations induced by transcranial DC motor cortex stimulation
in humans.
Neurology.
2001;
57
1899-1901
73
Nitsche M A, Fricke K, Henschke U. et al .
Pharmacological modulation of cortical excitability shifts induced by transcranial
direct current stimulation in humans.
J Physiol.
2003;
553
293-301
74
Nitsche M A, Liebetanz D, Antal A. et al .
Modulation of cortical excitability by weak direct current stimulation - technical,
safety and functional aspects.
Suppl Clin Neurophysiol.
2003;
56
255-276
75
Nitsche M A, Nitsche M S, Klein C C. et al .
Level of action of cathodal DC polarisation induced inhibition of the human motor
cortex.
Clin Neurophysiol.
2003;
114
600-604
76
Nitsche M A, Schauenburg A, Lang N. et al .
Facilitation of implicit motor learning by weak transcranial direct current stimulation
of the primary motor cortex in the human.
J Cogn Neurosci.
2003;
15
619-626
77
Nitsche M A, Seeber A, Frommann K. et al .
Modulating parameters of excitability during and after transcranial direct current
stimulation of the human motor cortex.
J Physiol.
2005;
568
291-303
78
Oliveri M, Rossini P M, Traversa R. et al .
Left frontal transcranial magnetic stimulation reduces contralesional extinction in
patients with unilateral right brain damage.
Brain.
1999;
122
1731-1739
79
Pascual-Leone A, Houser C M, Reese K. et al .
Safety of rapid-rate transcranial magnetic stimulation in normal volunteers.
Electroencephalogr Clin Neurophysiol.
1993;
89
120-130
80
Pascual-Leone A, Gomez-Tortosa E, Grafman J. et al .
Induction of visual extinction by rapid-rate transcranial magnetic stimulation of
parietal lobe.
Neurology.
1994;
44
494-498
81
Pascual-Leone A, Valls-Sole J, Wassermann E M. et al .
Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.
Brain.
1994;
117
847-858
82
Paulus W.
Transcranial direct current stimulation (tDCS).
Suppl Clin Neurophysiol.
2003;
56
249-254
83
Peyron R, Garcia-Larrea L, Deiber M P. et al .
Electrical stimulation of precentral cortical area in the treatment of central pain:
electrophysiological and PET study.
Pain.
1995;
62
275-286
84
Plautz E J, Barbay S, Frost S B. et al .
Post-infarct cortical plasticity and behavioral recovery using concurrent cortical
stimulation and rehabilitative training: a feasibility study in primates.
Neurol Res.
2003;
25
801-810
85
Plewnia C, Lotze M, Gerloff C.
Disinhibition of the contralateral motor cortex by low-frequency rTMS.
Neuroreport.
2003;
14
609-612
86
Priori A.
Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive
modulation of brain excitability.
Clin Neurophysiol.
2003;
114
589-595
87
Purpura D P, McMurtry J G.
Intracellular Activities and Evoked Potential Changes during Polarization of Motor
Cortex.
J Neurophysiol.
1965;
28
166-185
88
Rioult-Pedotti M S, Friedman D, Donoghue J P.
Learning-induced LTP in neocortex.
Science.
2000;
290
533-536
89
Rogalewski A, Breitenstein C, Nitsche M A. et al .
Transcranial direct current stimulation disrupts tactile perception.
Eur J Neurosci.
2004;
20
313-316
90
Schambra H M, Sawaki L, Cohen L G.
Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic
stimulation of the contralateral M1.
Clin Neurophysiol.
2003;
114
130-133
91
Siebner H R, Rothwell J.
Transcranial magnetic stimulation: new insights into representational cortical plasticity.
Exp Brain Res.
2003;
148
1-16
92
Takeuchi N, Chuma T, Matsuo Y. et al .
Repetitive transcranial magnetic stimulation of contralesional primary motor cortex
improves hand function after stroke.
Stroke.
2005;
36
2681-2686
93
Teskey G C, Flynn C, Goertzen C D. et al .
Cortical stimulation improves skilled forelimb use following a focal ischemic infarct
in the rat.
Neurol Res.
2003;
25
794-800
94
Truelsen T, Piechowski-Jozwiak B, Bonita R. et al .
Stroke incidence and prevalence in Europe: a review of available data.
Eur J Neurol.
2006;
13
581-598
95
Vines B W, Nair D G, Schlaug G.
Contralateral and ipsilateral motor effects after transcranial direct current stimulation.
Neuroreport.
2006;
17
671-674
96
Walsh V, Cowey A.
Transcranial magnetic stimulation and cognitive neuroscience.
Nat Rev Neurosci.
2000;
1
73-79
97
Ward A, Payne K A, Caro J J. et al .
Care needs and economic consequences after acute ischemic stroke: the Erlangen Stroke
Project.
Eur J Neurol.
2005;
12
264-267
98
Wassermann E M.
Risk and safety of repetitive transcranial magnetic stimulation: report and suggested
guidelines from the International Workshop on the Safety of Repetitive Transcranial
Magnetic Stimulation, 5. - 7. June 1996.
Electroencephalogr Clin Neurophysiol.
1998;
108
1-16
99
Wassermann E M, Wedegaertner F R, Ziemann U. et al .
Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic
stimulation.
Neurosci Lett.
1998;
250
141-144
100
Wassermann E M, Grafman J.
Recharging cognition with DC brain polarization.
Trends Cogn Sci.
2005;
9
503-505
101
Yamamoto T, Katayama Y, Hirayama T. et al .
Pharmacological classification of central post-stroke pain: comparison with the results
of chronic motor cortex stimulation therapy.
Pain.
1997;
72
5-12
Kirstin-Friederike Heise, PT, MSc Neurophysiotherapy, BSc
Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf
Email: kheise@uke.uni-hamburg.de