Exp Clin Endocrinol Diabetes 2007; 115(5): 292-297
DOI: 10.1055/s-2007-970162
Article

© J. A. Barth Verlag in Georg Thieme Verlag KG · Stuttgart · New York

Long-Term Treatment of Central Cushing's Syndrome with Rosiglitazone

M. Morcos 1 , B. Fohr 1 , J. Tafel 1 , F. Pfisterer 1 , A. Hamann 1 , P. Humpert 1 , H. Bode 2 , V. Schwenger 1 , M. Zeier 1 , C. Becker 1 , C. Kasperk 1 , T. Schilling 1 , H.P. Hammes 2 , A. Bierhaus 1 , P.P. Nawroth 1
  • 1University of Heidelberg, Department of Internal Medicine, Endocrinology, Metabolism and Clinical Chemistry Heidelberg, Germany
  • 2University Hospital Mannheim, Germany
Further Information

Publication History

received 23. 8. 2006 first decision 31. 1. 2007

accepted 31. 1. 2007

Publication Date:
21 May 2007 (online)

Abstract

Context: Central Cushing's syndrome is not always curable by surgery or radiation of the pituitary. Medical treatment is often not possible or effective. Some studies revealed beneficial effects of the PPARγ (Peroxisome-Proliferator-Activator- Receptor-gamma)-agonist rosiglitazone (RG) in in vitro studies, animal models and short term clinical studies.

Objective: of this study was to observe the long-term effects of RG-treatment on cortisol- and ACTH -secretion, clinical outcomes and morphological changes of the pituitary in patients with persistent ACTH-overproduction despite previous operation and radiation.

Design, setting and patients: 14 patients with persistent central ACTH -production were included and monitored over a period up to 12 months. RG was administered daily and increased to a maximum dosage of 24 mg daily, according to the response of ACTH and cortisol secretion. ACTH and cortisol were measured at least every 4 weeks during RG treatment.

Results: Patients were treated between 4 and 12 months with RG (mean 6.8 months). Compared to baseline, ACTH- and cortisol levels dropped significantly (p<0.01) after 12, 16, 20, 24 and 28 weeks but thereafter rose again during the study period, despite continuous RG- treatment and dose increase up to the maximum dosage. This was paralleled by reocurrence of clinical symptoms. MRI-scans were performed in 6 patients because of persisting visible adenoma, but showed no morphological changes.

Conclusion: RG seems not to be a long-term treatment option for patients with persistent central ACTH-evcess. Though, in order to reduce perioperative complications, short term treatment of patients could be an alternative.

References

  • 1 Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M. Diagnosis and complications of Cushing's syndrome: a consensus statement.  J Clin Endocrin Metab. 2003;  88 5593-5602
  • 2 Bochicchio D, Losa M, Buchfelder M. Factors influencing the immediate and late outcome of Cushing's disease treated by transsphenoidal surgery: a retrospective study by the European Cushing's Disease Survey Group.  J Clin Endocrinol Metab. 1995;  80 3114-3120
  • 3 Invitti C, Pecori Giraldi F, De Martin M. Cavagnini F and the Study roup of the Italian Society of Endocrinology on the Pathophysiologyof the Hypothalamic-Pituitary-Adrenal Axis. Diagnosis and management of Cushing's syndrome: results of an Italian multicentre study.  J Clin Endocrinol Metab. 1999;  84 440-448
  • 4 Pereira AM, van Aken MO, van Dulken H, Schutte PJ, Biermasz NR, Smit JW, Roelfsema F, Romijn JA. Long-term predictive value of postsurgicalcortisol concentrations for cure and risk of recurrence in Cushing's disease.  J Clin Endocrinol Metab. 2003;  88 5858-5864
  • 5 Mampalam TJ, Tyrrell JB, Wilson CB. Transsphenoidal microsurgery for Cushing disease. A report of 216 cases.  Ann Intern Med. 1988;  109 ((6)) 487-493
  • 6 Estrada J, Boronat M, Mielgo M, Magallon R, Millan I, Diez S, Lucas T, Barcelo B. The longterm outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing's disease.  N Engl J Med. 1997;  336 172-177
  • 7 Miller JW, Crapo L. The medical treatment of Cushing's syndrome.  Endocr Rev. 1993;  14 ((4)) 443-458
  • 8 Nieman LK. Medical therapy of Cushing's disease.  Pituitary. 2002;  5 77-82
  • 9 Lirieger DT, Amorosa L, Linick F. Cyproheptadine-induced remission of Cushing's disease.  N Engl J Med. 1975;  293 ((18)) 893-896
  • 10 Sonino N. The use of ketoconazole as an inhibitor of steroid production.  N Engl J Med. 1987;  317 ((13)) 812-818
  • 11 Trainer PJ, Besser M. Cushing's syndrome. Therapy directed at the adrenal glands.  Endocrinol Metab Clin North Am. 1994;  23 ((3)) 571-584
  • 12 Heaney AP, Fernando M, Yong WH, Melmed S. Functional PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas.  Nat Med. 2002;  8 ((11)) 1281-1287
  • 13 K Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma.  Cell. 1995;  83 ((5)) 803-812
  • 14 Goldstein BJ. Rosiglitazone.  Int J Clin Pract. 2000;  54 333-337
  • 15 Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation.  Cell. 1995;  83 ((5)) 813-819
  • 16 Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidine receptor.  Diabetes. 1998;  47 507-514
  • 17 Saltiel AR, Olefsky JM. Thizolidindiones in the treatment of insulin resistance and type II diabetes.  Diabetes. 1996;  45 1661-1669
  • 18 Stumvoll M, Haring HU. Glitazones: clinical effects and molecular mechanisms.  Ann Med. 2002;  34 ((3)) 217-224
  • 19 Bosco AA, Lerario AC, Santos RF, Wajchenberg BL. Effect of thalidomide and rosiglitazone on the prevention of diabetic retinopathy in streptozotocin-induced diabetic rats.  Diabetologia. 2003;  46 ((12)) 1669-1675
  • 20 Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L, Hahnfeldt P, Folkman J, Kaipainen A. PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis.  J Clin Invest. 2002;  110 ((7)) 923-932
  • 21 Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo.  J Biol Chem. 1999;  274 ((13)) 9116-9121
  • 22 Elstner E, Muller C, Koshizuka K, Williamson EA, Park D, Asou H, Shintaku P, Said JW, Heber D, Koeffler HP. Ligands for peroxisome proliferator-activated receptor-γ and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice.  Proc Natl Acad Sci. 1998;  95 ((15)) 8806-8811
  • 23 Kubota T, Koshizuka K, Williamson EA, Asou H, Said JW, Holden S, Miyoshi I, Koeffler HP. Ligand for peroxisome proliferator-activated receptor- (troglitazone) has potent anti-tumor effects against prostate cancer both in vitro and in vivo.  Cancer Ressearch. 1998;  58 3344-3352
  • 24 Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM. Differentiation and reversal of malignant changes in colon cancer through PPARgamma.  Nat Med. 1998;  4 ((9)) 1046-1052
  • 25 Theocharisa S, Margeli A, Kouraklis G. Peroxisome proliferator activated receptor-gamma ligands as potent antineoplastic agents.  Curr Med Chem Anti-Canc Agents. 2003;  3 239-251
  • 26 Heaney AP, Fernando MH, Melmed S. PPARγ receptor ligands: a novel therapy for pituitary tumors.  J Clin Invest. 2003;  111 1381-1388
  • 27 Sonino N, Boscaro M, Fallo F. Pharmacologic management of Cushings syndrome: new targets for therapy.  Treat Endocrinol. 2005;  4 ((2)) 87-94
  • 28 Alevizaki M, Philippou G, Zapanti L, Alevizaki CC, Anastasiou E, Mavrikakis M. Significant improvement of recurrent pituitary-dependent Cushing's syndrome after administration of a PPAR-γ agonist. Program of the 86th Annual Meeting of the Endocrine Society. New Orleans LA 2004 p 418 (Abstract)
  • 29 Ambrosi B, Arosio M, Dall'Asta C, Cannavo S, Libe R, Vigo T, Chiodini I, Epaminonda P, Trimarchi F, Beck-Peccoz P. Effects of chronic administration of the PPAR-y receptor ligand rosiglitazone in Cushing's disease.  Eur J Endocrinol. 2004;  151 173-178
  • 30 Cannavo S, Ambrosi B, Chiodini I, Vigo T, Russo A, Milici C, Barbetta L, Dall'Asta C, Adda G, Arosio M. Baseline and CRHstimulated ACTH and cortisol levels after administration of the PPAR-g ligand, rosiglitazone, in Cushing's disease.  J End Invest. 2004;  2994 ((27)) 8-11
  • 31 Heaney AP, Drange MR, Melmed S. Functional PPAR-γ receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas (Cushing's disease).  The Endocrine Society's 85th Annual Meeting. 2003;  , 19-22 June, (Abstract)
  • 32 Hull SSA, Sheridan B, Atkinson AB. Pre-operative medical therapy with rosiglitazone in two patients with newly diagnosed pituitary-dependent Cushing's syndrome.  Clinical Endocrinology. 2005;  62 258-262
  • 33 Mullan KR, Leslie H, McCnace DR, Sheridan B, Atkinson AB. The PPAR-gamma activator rosiglitazone fails to lower plasma ACTH levels in patients with Nelson's syndrome.  Clin Endocrinol. 2006;  64 ((5)) 519-522
  • 34 Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK. Peroxisome proliferatoractivated receptor gamma ligands inhibit development of atherosclerosis in LDL receptordeficient mice.  J Clin Invest. 2000;  106 ((4)) 523-531
  • 35 Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T. Ligands for peroxisome proliferatoractivated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells.  J Clin Endocrinol Metab. 2001;  86 ((5)) 2170-2177
  • 36 Veldhuis JD, Zhang G, Garmey JC. Troglitazone, an insulin-sensitizing thiazoledinedione, represses combined stimulation by LH and insulin of de novo androgen biosynthesis by thecal cells in vitro.  J Clin Endocrin Metab. 2002;  87 1129-1133
  • 37 Arlt W, Auchus RJ, Miller WL. Thiazoledinediones but not metformin directly inhibit the steroidogenic enzymes P450c17 and 3b-hydroxysteroid dehydrogenase.  J Biol Chem. 2001;  276 16767-16771
  • 38 Willi SM, Kennedy A, Wallace P, Ganaway E, Rogers NL, Garvey WT. Troglitazone antagonizes metabolic effects of glucocorticoids in humans. Effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids and leptin.  Diabetes. 2002;  51 2895-2902
  • 39 Catrina SB, Virtanen K, Hallsten K, Lonnqvist F, Nuutila P, Brismar K. Effect of rosiglitazone on early-morning plasma cortisol levels.  Neuro Endocrinol Lett. 2005;  26 ((1)) 51-54
  • 40 Suri D, Weiss RE. Effect of Pioglitazone on ACTH and Cortisol Secretion in Cushing's Disease.  J Clin Endocrin Metal. 2005;  90 ((3)) 1340-1346
  • 41 Motomura W, Okumura T, Takahashi N, Obara T, Kohgo Y. Activation of peroxisome proliferator-activated receptor gamma by troglitazone inhibits cell growth through the increase of p27KiP1 in human. Pancreaticcarcinoma cells.  Cancer Res. 2000;  , 1 60 ((19)) 5558-5564
  • 42 Sugimura A, Kiriyama Y, Nochi H, Tsuchiya H, Tamoto K, Sakurada Y, Ui M, Tokumitsu Y. Troglitazone suppresses cell growth of myeloid leukemia cell lines by induction of p21WAF1/CIP1 cyclin-dependent kinase inhibitor.  Biochem Biophys Res Commun. 1999;  , 11 261 ((3)) 833-837
  • 43 Goke R, Goke A, Goke B, Chen Y. Regulation of TRAIL-induced apoptosis by transcription factors.  Cell Immunol. 2000;  201 ((2)) 77-82
  • 44 Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators.  Nature. 1998;  , 25 393 ((6687)) 790-793
  • 45 Aktas H, Fluckiger R, Acosta JA, Savage JM, Palakurthi SS, Halperin JA. Depletion of intracellular Ca2+ stores, phosphorylation of eIF2alpha, and sustained inhibition of translation initiation mediate the anticancer effects of clotrimazole.  Proc Natl Acad Sci. 1998;  , 15 95 ((14)) 8280-8285

Correspondence

M. Morcos

University of Heidelberg

Dept. of Internal Medicine I

Endocrinology and Metabolism and Clinical Chemistry INF 410

69120 Heidelberg

Germany

Phone: +49/62/21/56 38 604

Fax: +49/62/21/56 41 01

Email: Michael_Morcos@med.uniheidelberg.de

    >