Abstract
Introduction: Apolipoprotein A-IV (apoA-IV), an intestinally and cerebrally synthesized satiety
factor and anti-atherogenic plasma apolipoprotein, was recently identified as an anti-inflammatory
protein. In order to elucidate whether intestinal apoA-IV exerts similar repair function
as its hepatic homologue apolipoprotein A-V (apoA-V), apoA-IV-interactive proteins
were searched and in vitro functional studies were performed with apoA-IV overexpressing cells. ApoA-IV was
also analyzed in the intestinal mucosa of patients with inflammatory bowel diseases
(IBD), together with other genes involved in epithelial junctional integrity.
Methods: A yeast-two-hybrid screening was used to identify apoA-IV-interactors. ApoA-IV was
overexpressed in Caco-2 and HT-29 mucosal cells for colocalization and in vitro epithelial permeability studies. Mucosal biopsies from quiescent regions of colon
transversum and terminal ileum were subjected to DNA-microarray analysis and pathway-related
data mining.
Results: Four proteins interacting with apoA-IV were identified, including apolipoprotein
B-100, α1 -antichymotrypsin, cyclin C, and the cytosolic adaptor α-catenin, thus linking apoA-IV
to adherens junctions. Overexpression of apoA-IV was paralleled with a differentiated
phenotype of intestinal epithelial cells, upregulation of junctional proteins, and
decreased paracellular permeability. Colocalization between α-catenin and apoA-IV
occurred exclusively in junctional complexes. ApoA-IV was downregulated in quiescent
mucosal tissues from patients suffering from IBD. In parallel, only a distinct set
of junctional genes was dysregulated in non-inflamed regions of IBD gut.
Conclusions: ApoA-IV may act as a stabilizer of adherens junctions interacting with α-catenin,
and is likely involved in the maintenance of junctional integrity. ApoA-IV expression
is significantly impaired in IBD mucosa, even in non-inflamed regions.
Key words
Apolipoproteins - catenins - intestinal permeability - junctional integrity - inflammatory
bowel disease
References
1
Weinberg RB.
Apolipoprotein A-IV polymorphisms and diet-gene interactions.
Curr Opin Lipidol.
2002;
13
125-134
2
Green PH, Glickman RM, Riley JW, Quinet E.
Human apolipoprotein A-IV. Intestinal origin and distribution in plasma.
J Clin Invest.
1980;
65
911-919
3
Wu AL, Windmueller HG.
Relative contributions by liver and intestine to individual plasma apolipoproteins
in the rat.
J Biol Chem.
1979;
254
7316-7322
4
Liu M, Doi T, Shen L, Woods SC, Seeley RJ, Zheng S, Jackman A, Tso P.
Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat
hypothalamus.
Am J Physiol Regul Integr Comp Physiol.
2001;
280
R1382-R1387
5
Tso P, Sun W, Liu M.
Gastrointestinal satiety signals IV. Apolipoprotein A-IV.
Am J Physiol Gastrointest Liver Physiol.
2004;
286
G885-G890
6
Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS,
Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD.
Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by
increasing chylomicron size.
J Biol Chem.
2006;
281
3473-3483
7
Qin X, Swertfeger DK, Zheng S, Hui DY, Tso P.
Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation.
Am J Physiol.
1998;
274
H1836-H1840
8
Ferretti G, Bacchetti T, Bicchiega V, Curatola G.
Effect of human Apo AIV against lipid peroxidation of very low density lipoproteins.
Chem Phys Lipids.
2002;
114
45-54
9
Thorngate FE, Yancey PG, Kellner-Weibel G, Rudel LL, Rothblat GH, Williams DL.
Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action
of low-level apoE expression.
J Lipid Res.
2003;
44
2331-2338
10
Emmanuel F, Steinmetz A, Rosseneu M, Brasseur R, Gosselet N, Attenot F, Cuine S, Seguret S,
Latta M, Fruchart JC, Denéfle P.
Identification of specific amphipathic alpha-helical sequence of human apolipoprotein
A-IV involved in lecithin:cholesterol acyltransferase activation.
J Biol Chem.
1994;
269
29883-29890
11
Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchart JC, Steinmetz A,
Denéfle P.
Protection against atherogenesis in mice mediated by human apolipoprotein A-IV.
Science.
1996;
273
966-968
12
Cohen RD, Castellani LW, Qiao JH, Lenten BJ Van, Lusis AJ, Reue K.
Reduced aortic lesions and elevated high density lipoprotein levels in transgenic
mice overexpressing mouse apolipoprotein A-IV.
J Clin Invest.
1997;
99
1906-1916
13
Kronenberg F, Stuhlinger M, Trenkwalder E, Geethanjali FS, Pachinger O, Eckardstein A
von, Dieplinger H.
Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease.
J Am Coll Cardiol.
2000;
36
751-757
14
Wong WM, Hawe E, Li LK, Miller GJ, Nicaud V, Pennacchio LA, Humphries SE, Talmud PJ.
Apolipoprotein AIV gene variant S347 is associated with increased risk of coronary
heart disease and lower plasma apolipoprotein AIV levels.
Circ Res.
2003;
92
969-975
15
Recalde D, Ostos MA, Badell E, Garcia-Otin AL, Pidoux J, Castro G, Zakin MM, Scott-Algara D.
Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic
effects of a chronic infection mimicked by lipopolysaccharide.
Arterioscler Thromb Vasc Biol.
2004;
24
756-761
16
Vowinkel T, Mori M, Krieglstein CF, Russell J, Saijo F, Bharwani S, Turnage RH, Davidson WS,
Tso P, Granger DN, Kalogeris TJ.
Apolipoprotein A-IV inhibits experimental colitis.
J Clin Invest.
2004;
114
260-269
17
Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, Stremmel W, Schmitz G.
Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X
receptor target genes.
Gastroenterology.
2004;
127
26-40
18
Edens HA, Levi BP, Jaye DL, Walsh S, Reaves TA, Turner JR, Nusrat A, Parkos CA.
Neutrophil transepithelial migration: evidence for sequential, contact-dependent signaling
events and enhanced paracellular permeability independent of transjunctional migration.
J Immunol.
2002;
169
476-486
19
Dieplinger H, Lobentanz EM, Konig P, Graf H, Sandholzer C, Matthys E, Rosseneu M,
Utermann G.
Plasma apolipoprotein A-IV metabolism in patients with chronic renal disease.
Eur J Clin Invest.
1992;
22
166-174
20
Langmann T, Mauerer R, Zahn A, Moehle C, Probst M, Stremmel W, Schmitz G.
Real-time reverse transcription-PCR expression profiling of the complete human ATP-binding
cassette transporter superfamily in various tissues.
Clin Chem.
2003;
49
230-238
21
Ritter M, Buechler C, Boettcher A, Barlage S, Schmitz-Madry A, Orsó E, Bared SM, Schmiedeknecht G,
Baehr CH, Fricker G, Schmitz G.
Cloning and characterization of a novel apolipoprotein A-I binding protein, AI-BP,
secreted by cells of the kidney proximal tubules in response to HDL or ApoA-I.
Genomics.
2002;
79
693-702
22 Sambrook JRDW.
Molecular Cloning, a Laboratory Manual . Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 2001
23
Bottcher A, Mollers C, Lackner KJ, Schmitz G.
Automated free-solution isotachophoresis: instrumentation and fractionation of human
serum proteins.
Electrophoresis.
1998;
19
1110-1116
24
Bottcher A, Schlosser J, Kronenberg F, Dieplinger H, Knipping G, Lackner KJ, Schmitz G.
Preparative free-solution isotachophoresis for separation of human plasma lipoproteins:
apolipoprotein and lipid composition of HDL subfractions.
J Lipid Res.
2000;
41
905-915
25
Drobnik W, Borsukova H, Boettcher A, Pfeiffer A, Liebisch G, Schuetz GJ, Schindler H,
Schmitz G.
Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct
cholesterol-based microdomains.
Traffic.
2002;
3
268-278
26
Hidalgo IJ, Raub TJ, Borchardt RT.
Characterization of the human colon carcinoma cell line (Caco-2) as a model system
for intestinal epithelial permeability.
Gastroenterology.
1989;
96
736-749
27
Lindhardt K, Bechgaard E.
Sodium glycocholate transport across Caco-2 cell monolayers, and the enhancement of
mannitol transport relative to transepithelial electrical resistance.
Int J Pharm.
2003;
252
181-186
28
Beavon IR.
The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation.
Eur J Cancer.
2000;
36
1607-1620
29 Havel RJ, Cane JP.
Introduction: structure and metabolism of plasma lipoproteins. In: Scriver CR, Beaudet AL, Sly WS, Vall D, Childs B, Kinzler KW, Vogelstein B (eds).
The metabolic and molecular bases of inherited disease. 8th Ed. New York: McGraw-Hill
Medical Publishing 2001: 2705-271
30
Zhang S, Janciauskiene S.
Multi-functional capability of proteins: alpha1-antichymotrypsin and the correlation
with Alzheimer's disease.
J Alzheimers Dis.
2002;
4
115-122
31
Ren S, Rollins BJ.
Cyclin C/cdk3 promotes Rb-dependent G0 exit.
Cell.
2004;
117
239-251
32
Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E.
Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II.
Oncogene.
1996;
12
2631-2640
33
Nusrat A, Parkos CA, Verkade P, Foley CS, Liang CS, Liang TW, Innis-Whitehouse W,
Eastburn KK, Madara JL.
Tight junctions are membrane microdomains.
J Cell Sci.
2000;
113
1771-1781
34
Clayburgh DR, Shen L, Turner JR.
A porous defense: the leaky epithelial barrier in intestinal disease.
Lab Invest.
2004;
84
282-291
35
Leblond CP.
The life history of cells in renewing systems.
Am J Anat.
1981;
160
114-158
36 Podolsky DK, Babyatsky WW.
Growth and development of the gastrointestinal tract. In: Yamada T (ed). Textbook of Gastroenterology. Philadelphia: J. B. Lippincott 1999:
547-584
37
Laprise P, Chailler P, Houde M, Beaulieu JF, Boucher MJ, Rivard N.
Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation
by promoting adherens junction assembly and p38 MAPK activation.
J Biol Chem.
2002;
277
8226-8234
38
Schmitz H, Barmeyer C, Fromm M, Runkel N, Foss HD, Bentzel CJ, Riecken EO, Schulzke JD.
Altered tight junction structure contributes to the impaired epithelial barrier function
in ulcerative colitis.
Gastroenterology.
1999;
116
301-309
39
Groenendijk M, Bruin TW De, Dallinga-Thie GM.
Two polymorphisms in the apo A-IV gene and familial combined hyperlipidemia.
Atherosclerosis.
2001;
158
369-376
40
Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE.
Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining
plasma triglycerides.
Hum Mol Genet.
2002;
11
3039-3046
41
Pennacchio LA, Rubin EM.
Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels
in humans and mice.
Arterioscler Thromb Vasc Biol.
2003;
23
529-534
42
Vliet HN Van der, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA.
Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver
regeneration.
J Biol Chem.
2001;
276
44512-44520
43
Reisher SR, Hughes TE, Ordovas JM, Schaefer EJ, Feinstein SI.
Increased expression of apolipoprotein genes accompanies differentiation in the intestinal
cell line Caco-2.
Proc Natl Acad Sci USA.
1993;
90
5757-5761
44
Yap AS, Brieher WM, Gumbiner BM.
Molecular and functional analysis of cadherin-based adherens junctions.
Annu Rev Cell Dev Biol.
1997;
13
119-146
45
Balda MS, Matter K.
Epithelial cell adhesion and the regulation of gene expression.
Trends Cell Biol.
2003;
13
310-318
46
Giannini A, Mazor M, Orme M, Vivanco M, Waxman J, Kypta R.
Nuclear export of alpha-catenin: overlap between nuclear export signal sequences and
the beta-catenin binding site.
Exp Cell Res.
2004;
295
150-160
47
Aken E Van, Wever O De, Correia da Rocha AS, Mareel M.
Defective E-cadherin/catenin complexes in human cancer.
Virchows Arch.
2001;
439
725-751
48
Basque JR, Levy E, Beaulieu JF, Menard D.
Apolipoproteins in human fetal colon: immunolocalization, biogenesis, and hormonal
regulation.
J Cell Biochem.
1998;
70
354-365
49
Gassler N, Rohr C, Schneider A, Kartenbeck J, Bach A, Obermueller N, Otto HF, Autschbach F.
Inflammatory bowel disease is associated with changes of enterocytic junctions.
Am J Physiol Gastrointest Liver Physiol.
2001;
281
G216-G228
50
Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A.
Neutrophil transmigration in inflammatory bowel disease is associated with differential
expression of epithelial intercellular junction proteins.
Am J Pathol.
2001;
159
2001-2009
51
Bergman D, Kadner SS, Cruz MR, Esterman AL, Tahery MM, Young BK, Finlay TH.
Synthesis of alpha 1-antichymotrypsin and alpha 1-antitrypsin by human trophoblast.
Pediatr Res.
1993;
34
312-317
52
Molmenti EP, Ziambaras T, Perlmutter DH.
Evidence for an acute phase response in human intestinal epithelial cells.
J Biol Chem.
1993;
268
14116-14124
53
Vreugdenhil AC, Dentener MA, Snoek AM, Greve JW, Buurman WA.
Lipopolysaccharide binding protein and serum amyloid A secretion by human intestinal
epithelial cells during the acute phase response.
J Immunol.
1999;
163
2792-2798
54
Abraham CR.
Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer's disease.
Neurobiol Aging.
2001;
22
931-936
55
Bergstrom J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P.
Two different types of amyloid deposits-apolipoprotein A-IV and transthyretin-in a
patient with systemic amyloidosis.
Lab Invest.
2004;
84
981-988
Correspondence
E. OrsóMD, PhD, MSc
Institute for Clinical Chemistry and Laboratory Medicine
University of Regensburg
Franz-Josef-Strauss-Allee 11
93053 Regensburg
Germany
Phone: +49/941/944 62 37
Fax: +49/941/944 62 02
Email: evelyn.orso@klinik.uni-regensburg.de