Abstract
Alkynylalanes were found to react efficiently with propargylic electrophiles, such
as propargyl mesylates and propargyl diethylphosphates. The reaction proceeds with
high regioselectivity and does not require copper or any other transition metal.
Key words
alkynes - alanes - aluminum - cross-coupling - regioselectivity
References
<A NAME="RZ19407SS-1A">1a </A> For a general review, see:
Normant JF.
Synthesis
1972,
63
Exceptions include the use of tris(alkynyl)indiums with benzyl bromide catalyzed by
Cl2 Pd(dppf) and the use of alkynylboron dichlorides with benzyl, benzylallyl and benzypropargyl
secondary alcohols.
<A NAME="RZ19407SS-1B">1b </A>
Perez J.
Perez-Sestelo L.
Sarandeses A.
J. Am. Chem. Soc.
2001,
123:
4155
<A NAME="RZ19407SS-1C">1c </A>
Kabalka GW.
Yao M.-L.
Borella S.
Org. Lett.
2006,
8:
879
<A NAME="RZ19407SS-2A">2a </A>
Durand S.
Parrain J.-L.
Santelli M.
J. Chem. Soc., Perkin Trans. 1
2000,
253
<A NAME="RZ19407SS-2B">2b </A>
Tedeschi C.
Saccavini C.
Maurette L.
Soleilhavoup M.
Chauvin R.
J. Organomet. Chem.
2003,
670:
151
<A NAME="RZ19407SS-3A">3a </A>
Brandsma L.
Synthesis of Acetylenes, Allenes and Cumulenes
Elsevier;
Amsterdam:
2003. and references cited therein
<A NAME="RZ19407SS-3B">3b </A>
Jeffery T.
Guenot S.
Linstrumelle G.
Tetrahedron Lett.
1992,
33:
5757
<A NAME="RZ19407SS-3C">3c </A>
Hansen TV.
Stenstrom Y.
Tetrahedron: Asymmetry
2001,
12:
1407
<A NAME="RZ19407SS-3D">3d </A>
Spinella A.
Caruso T.
Martino M.
Sessa C.
Synlett
2001,
1971
<A NAME="RZ19407SS-3E">3e </A> For an exception:
Padmanabhan S.
Nicholas KM.
Tetrahedron Lett.
1983,
24:
2239
<A NAME="RZ19407SS-4A">4a </A>
Mel’nikova VI.
Pivnitskii KK.
Zh. Org. Khim.
1990,
26:
78 ; Chem. Abstr. 1990 , 113, 23031
<A NAME="RZ19407SS-4B">4b </A>
Mathai IM.
Taniguchi H.
Miller SI.
J. Am. Chem. Soc.
1967,
89:
115
<A NAME="RZ19407SS-4C">4c </A>
Hungerford NL.
Kitching W.
J. Chem. Soc., Perkin Trans. 1
1998,
1839
<A NAME="RZ19407SS-5A">5a </A>
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.1543
<A NAME="RZ19407SS-5B">5b </A>
Bohlmann F.
Schoenowsky H.
Inhoffen E.
Grau G.
Chem. Ber.
1964,
97:
794
<A NAME="RZ19407SS-6">6 </A>
Kessabi J.
Beaudegnies R.
Jung PMJ.
Martin B.
Montel F.
Wendeborn S.
Org. Lett.
2006,
8:
5629
<A NAME="RZ19407SS-7A">7a </A>
Shinoda M.
Iseki K.
Oguri T.
Hayasi Y.
Yamada S.
Shibasaki M.
Tetrahedron Lett.
1986,
27:
87
<A NAME="RZ19407SS-7B">7b </A>
Fried J.
Sih JC.
Tetrahedron Lett.
1973,
14:
3899
<A NAME="RZ19407SS-7C">7c </A>
Fried J.
Lin C.
Ford SH.
Tetrahedron Lett.
1969,
10:
1379
<A NAME="RZ19407SS-7D">7d </A>
Ben-Efraim DA.
Sondheimer F.
Tetrahedron
1969,
25:
2823
<A NAME="RZ19407SS-8A">8a </A>
Feuvrie C.
Blanchet J.
Bonin M.
Micouin L.
Org. Lett.
2004,
6:
2333
<A NAME="RZ19407SS-8B">8b </A>
Wang B.
Bonin M.
Micouin L.
Org. Lett.
2004,
6:
3481
<A NAME="RZ19407SS-9">9 </A>
The need for two equivalents of alkynylalane when employing propargyl phosphates and
phosphinates suggests that the reaction proceeds via an alternative mechanism, essentially
involving Lewis acid activation prior to coordination and transfer brought on by the
second equivalent of alkynylalane.
<A NAME="RZ19407SS-10">10 </A>
Lapitskaya MA.
Vasiljeva LL.
Pivnitsky KK.
Synthesis
1993,
65
<A NAME="RZ19407SS-11">11 </A>
Unpublished results from this laboratory.
<A NAME="RZ19407SS-12">12 </A>
Yanagisawa A.
Nomura N.
Yamamoto H.
Tetrahedron
1994,
50:
6017
<A NAME="RZ19407SS-13">13 </A>
White WL.
Anzeveno PB.
J. Org. Chem.
1982,
43:
2379
<A NAME="RZ19407SS-14">14 </A>
Tanabe Y.
Yamamoto H.
Yoshida Y.
Miyawaki T.
Utsumi N.
Bull. Chem. Soc. Jpn.
1995,
68:
297
<A NAME="RZ19407SS-15">15 </A>
Easton CJ.
Ferrante A.
Robertson TA.
Xia L.
Aust. J. Chem.
2002,
55:
647