Zusammenfassung
Hintergrund: Das konfokale In-vivo-Mikroskop (KIVM) ist eine neu entwickelte Methode, welche sich
eignet, die Hornhautnervenmorphologie im Detail zu studieren. Das Ziel der Studie
ist die Untersuchung der Rolle des KIVM bei der Evaluierung diverser Polyneuropathien
und die Definition der so festgestellten Hornhautveränderungen. Patienten und Methoden: Achtzehn Patienten mit diversen Polyneuropathien wurden mittels neurologischer und
ophthalmologischer klinischer Untersuchung und Elektroneuromyografie (ENMG) charakterisiert.
Die Hornhautnerven wurden mittels KIVM (Heidelberg Retina Tomograph II (HRTII)) bei
allen Patienten untersucht und mit einer Gruppe von 15 altersgleichen Patienten verglichen.
Der sub-basale Nervenplexus wurde statistisch nach folgenden Kriterien analysiert:
Nervenfaserdichte der langen Nerven, Nervenramifizierungsdichte, Nervendicke, Anzahl
von Nervenperlen und Nerventortuosität. Ergebnisse: Im Vergleich zur Kontrollgruppe waren in der Polyneuropathiegruppe folgende drei
Parameter signifikant reduziert: Nervenfaserndichte der langen Nerven (p < 0,01),
Nervenramifizierungsdichte (p < 0,001), Anzahl von Nervenperlen (p = 0,001). Zusätzlich
war der Grad an durchschnittlicher Nerventortuosität in der Polyneuropathiegruppe
höher (2,87 ± 0,97) als in der Kontrollgruppe (1,17 ± 0,68) (p < 0,0001). Schlussfolgerung: KIVM erlaubt die In-vivo-Untersuchung der Hornhautnerven in hoher Resolution. Aus
diesem Grund erscheint uns diese Methode im klinischen Alltag als höchst wertvoll.
Die KIVM hat sich in unserer Studie in einer breiten Auswahl von polyneuropathischen
Zuständen als nützlich erwiesen.
Abstract
Background: In vivo confocal microscopy (IVCM) is a newly developed application to assess corneal
nerve morphology. The purpose of the study is to evaluate the role of IVCM in the
assessment of various types of polyneuropathy, and to define alterations of corneal
nerves in such conditions. Patients and Methods: Eighteen patients with various types of polyneuropathy were characterized by clinical
neurological and ophthalmic examinations, as well as by electroneuromyography (ENMG).
Full thickness IVCM of corneal nerves was carried out on all patients and 15 age-matched
eyes using Heidelberg Retina Tomograph II (HRT II). The subbasal nerve plexus were
statistically analysed regarding long nerve fiber density, nerve branch density, nerve
thickness, nerve bead number and nerve tortuosity. Results: In subbasal nerve plexus, the following three parameters were significantly reduced
in patients with polyneuropathy compared to controls: long nerve fibre density (p
< 0.01), nerve branch density (p < 0.001), and nerve bead number (p = 0.001). In addition,
the average grade of nerve tortuosity was 2.87 ± 0.97 in the polyneuropathic group
and 1.17 ± 0.68 in the control group (p < 0.0001). Conclusions: IVCM allows a non-invasive, in vivo study of corneal nerves with high resolution.
It therefore appears invaluable in clinical investigations. IVCM appears to be valuable
in a large variety of polyneuropathic conditions.
Schlüsselwörter
In-vivo konfokale Mikroskopie - Hornhautnerven - Polyneuropathie - Elektroneuromyographie
Key words
in vivo confocal microscopy - corneal nerves - polyneuropathy - electroneuromyography
References
1
Arezzo J C.
New developments in the diagnosis of diabetic neuropathy.
Am J Med.
1999;
107
9S-16S (Review)
2
Belmonte C, Aracil A, Acosta M C. et al .
Nerves and sensations from the eye surface.
Ocul Surf.
2004;
2
248-254
3
Boulton A J, Malik R A, Arezzo J C. et al .
Diabetic somatic neuropathies.
Diabetes Care.
2004;
27
1458-1486
4
Boulton A J, Malik R A.
Diabetic neuropathy.
Med Clin North.
1998;
82
909-929
5
Chang P Y, Carrel H, Huang J S. et al .
Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes
in patients with diabetic retinopathy.
Am J Ophthalmol.
2006;
142
488-490
6
Green D A, Arezzo J C, Brown M B. Zenarestat Study Group .
Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic
neuropathy.
Neurology.
2001;
56
1124
7
Jacot J L, Hosotani H, Glover J P. et al .
Diabetic-like corneal sensitivity loss in galactose-fed rats ameliorated with aldose
reductase inhibitors.
J Ocul Pharmacol Ther.
1998;
14
169-180
8
Kallinikos P, Berhanu M, O’Donnell C. et al .
Corneal nerve tortuosity in diabetic patients with neuropathy.
Invest Ophthalmol Vis Sci.
2004;
45
418-422
9
Kawabuchi M, Chongjian Z, Islam A T. et al .
The effect of aging on the morphological nerve changes during muscle reinnervation
after nerve crush.
Restor Neurol Neurosci.
1998;
13
117-127
10
Liu X W, Pang G X, Wang Z.
In vivo confocal microscopy observation and evaluation of sensation in diabetic corneas.
Zhonghua Yan Ke Za Zhi.
2005;
41
920-923
11
Malik R A, Kallinikos P, Abbott C A. et al .
Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair
in diabetic patients.
Diabetologia.
2003;
46
683-688
12
Malik R A, Veves A, Walker D. et al .
Sural nerve fibre pathology in diabetic patients with mild neuropathy: relationship
to pain, quantitative sensory testing and peripheral nerve electrophysiology.
Acta Neuropathol.
2001;
101
367-374
13
Mehra S, Tavakoli M, Kallinikos P A. et al .
Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation
in patients with type 1 diabetes.
Diabetes Care.
2007;
10 (Epub ahead of print)
14
Midena E, Brugin E, Ghirlando A. et al .
Corneal diabetic neuropathy: a confocal microscopy study.
J Refract Surg.
2006;
22
S1047-S1052
15
Mocan M C, Durukan I, Irkec M. et al .
Morphologic alterations of both the stromal and subbasal nerves in the corneas of
patients with diabetes.
Cornea.
2006;
25
769-773
16
Muller L J, Marfurt C F, Kruse F. et al .
Corneal nerves: structure, contents and function.
Exp Eye Res.
2003;
77
253
17
Oliveira-Soto L, Efron N.
Morphology of corneal nerves using confocal microscopy.
Cornea.
2001;
20
374-384
18
Rothstein A, Auran J D, Wittpenn J R. et al .
Confocal microscopy in Meretoja syndrome.
Cornea.
2002;
21
364-367
19
Rosenberg M E, Tervo T M, Gallar J. et al .
Corneal morphology and sensitivity in lattice dystrophy type II (familial amyloidosis,
Finnish type).
Invest Ophthalmol Vis Sci.
2001;
42
634-641
20
Rosenberg M E, Tervo T M, Immonen I J. et al .
Corneal structure and sensitivity in type 1 diabetes mellitus.
Invest Ophthalmol Vis Sci.
2000;
41
2915-2921
21
Ruskell G l.
Ocular fibres of the maxillary nerve in monkeys.
J Anat.
1974;
118
195-203
22
Stachs O, Zhivov A, Kraak R. et al .
In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve
structure in the human cornea.
Graefes Arch Clin Exp Ophthalmol.
2007;
245
569-575
23
Villani E, Galimberti D, Viola F. et al .
The cornea in sjögren’s syndrome: an in vivo confocal study.
Invest Ophthalmol Vis Sci.
2007;
48
2017-2022
Avinoam B. Safran, MD
Ophthalmology Clinic, Department of Clinical Neurosciences, Geneva University Hospitals
22 rue Alcide Jentzer
1211 Geneva 14, Switzerland
Phone: ++ 41/22/3 82 83 62
Fax: ++ 41/22/3 82 84 33
Email: a. b.safran@hcuge.ch