Thorac Cardiovasc Surg 2008; 56(8): 441-448
DOI: 10.1055/s-2008-1038879
Basic Science

© Georg Thieme Verlag KG Stuttgart · New York

Different Biological Properties of Circulating and Bone Marrow Endothelial Progenitor Cells in Acute Myocardial Infarction Rats

Z. Xin1 , W. Meng1 , H. Ya-ping1 , Z. Wei1
  • 1The Division of Cardiology, Shanghai Sixth Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
Further Information

Publication History

received March 9, 2008

Publication Date:
14 November 2008 (online)

Abstract

Background: Many studies have shown that endothelial progenitor cell (EPC) can enhance the neovascularization of the ischemic myocardium. Peripheral blood and bone marrow are the most convenient resources for EPC.

Objective: The aim of the study was to investigate, in vitro and in vivo, the different biological properties between circulating EPC (CEPC) and bone marrow EPC (BM‐EPC) of AMI rats.

Methods: The proliferative, migrative, adherent and angiogenic properties were investigated in vitro. 1 × 106 CEPCs, 1 × 106 BM-EPCs and medium (EBM-2) were injected in the myocardium of AMI rats. Echocardiography, regional myocardial blood flow (RMBF), capillary density and Y chromosome fluorescence in situ hybridization (FISH) were performed at 4 weeks after transplantation.

Results: The CEPCs had higher proliferative, migrative, adherent capabilities and lower senescent ratio, could adhere more quickly to fibronectin than BM-EPCs. CEPCs could form capillary-like structures whereas BM-EPCs did not show similar structures on Matrigel. In vivo, transplanted CEPCs and BM-EPCs were found in cardiac tissue by FISH. CEPCs treatment led to a better cardiac function, RMBF and capillary density than BM-EPCs.

Conclusion: Different biological properties were observed between CEPCs and BM-EPCs. Autologous CEPCs are more suitable for the AMI rat.

References

  • 1 Krupnick A S, Balsara K R, Kreisel D. et al . Fetal liver as a source of autologous progenitor cells for perinatal tissue engineering.  Tissue Eng. 2004;  10 723-735
  • 2 Cao Y, Sun Z, Liao L. et al . Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo.  Biochem Biophys Res Commun. 2005;  332 370-379
  • 3 Wu K H, Zhou B, Lu S H. et al . In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells.  J Cell Biochem. 2007;  100 608-616
  • 4 Gehling U M, Ergun S, Schumacher U. et al . In vitro differentiation of endothelial cells from AC133-positive progenitor cells.  Blood. 2000;  95 3106-3112
  • 5 Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation.  Nippon Rinsho. 2006;  64 2126-2134
  • 6 Stamm C, Kleine H D, Westphal B. et al . CABG and bone marrow stem cell transplantation after myocardial infarction.  Thorac Cardiovasc Surg. 2004;  52 152-158
  • 7 Kawamoto A, Asahara T, Losordo D W. Transplantation of endothelial progenitor cells for therapeutic neovascularization.  Cardiovasc Radiat Med. 2002;  3 221-225
  • 8 Le Ricousse-Roussanne S, Barateau V, Contreres J O. et al . Ex vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors home to the angiogenic tumor vasculature.  Cardiovasc Res. 2004;  62 176-184
  • 9 Madeddu P. Therapeutic angiogenesis and vasculogenesis for tissue regeneration.  Exp Physiol. 2005;  90 315-326
  • 10 Rehman J, Li J, Orschell C M. et al . Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors.  Circulation. 2003;  107 1164-1169
  • 11 Gu J, Wang C Q, Fan H H. et al . Effects of resveratrol on endothelial progenitor cells and their contributions to reendothelialization in intimal-injured rats.  J Cardiovasc Pharmacol. 2006;  47 711-721
  • 12 Schachinger V, Assmus B, Honold J. et al . Normalization of coronary blood flow in the infarct-related artery after intracoronary progenitor cell therapy: intracoronary Doppler substudy of the TOPCARE‐AMI trial.  Clin Res Cardiol. 2006;  95 13-22
  • 13 Iwasaki H, Kawamoto A, Ishikawa M. et al . Dose-dependent contribution of CD34-positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction.  Circulation. 2006;  113 1311-1325
  • 14 Bompais H, Chafraoui J, Canron X. et al . Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells.  Blood. 2004;  103 2577-2584
  • 15 Hur J, Yoon C H, Kim H S. et al . Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.  Arterioscler Thromb Vasc Biol. 2004;  24 288-293
  • 16 Gulati R, Jevremovic D, Peterson T E. et al . Diverse origin and function of cells with endothelial phenotype obtained from adult human blood.  Circ Res. 2003;  93 1023-1025
  • 17 Massa M, Rosti V, Ferrario M. et al . Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction.  Blood. 2005;  105 199-206
  • 18 Tang J, Xie Q, Pan G. et al . Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.  Eur J Cardiothorac Surg. 2006;  30 353-361
  • 19 Murayama T, Tepper O M, Silver M. et al . Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo.  Exp Hematol. 2002;  30 967-972
  • 20 Fang N T, Xie S Z, Wang S M. et al . Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells.  Chin Med J. 2007;  120 (8) 696-702
  • 21 Verma S, Kuliszewski M A, Li S H. et al . C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease.  Circulation. 2004;  109 2058-2067
  • 22 Matsuo Y, Imanishi T, Hayashi Y. et al . The effect of senescence of endothelial progenitor cells on in-stent restenosis in patients undergoing coronary stenting.  Intern Med. 2006;  45 581-587
  • 23 De Angelis K, Ogawa T, Sanches I C. et al . Impairment of cardiac output and blood flow adjustments to exercise in L-NAME-induced hypertensive rats.  J Cardiovasc Pharmacol. 2006;  47 371-376
  • 24 Kawamoto A, Tkebuchava T, Yamaguchi J. et al . Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia.  Circulation. 2003;  107 461-468
  • 25 Kocher A A, Schuster M D, Szabolcs M J. et al . Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.  Nat Med. 2001;  7 430-436
  • 26 Kajiguchi M, Kondo T, Izawa H. et al . Safety and efficacy of autologous progenitor cell transplantation for therapeutic angiogenesis in patients with critical limb ischemia.  Circ J. 2007;  71 196-201
  • 27 Murayama T, Tepper O M, Silver M. et al . Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo.  Exp Hemato. 2002;  30 967-972
  • 28 Cuevas P, Barrios V, Giménez-Gallego G. et al . Serum levels of basic fibroblast growth factor in acute myocardial infarction.  Eur J Med Res. 1997;  28 282-284
  • 29 Kawamoto A, Kawata H, Akai Y. et al . Serum levels of VEGF and basic FGF in the subacute phase of myocardial infarction.  Int J Cardiol. 1998;  67 47-54
  • 30 Fontaine V, Filipe C, Werner N. et al . Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on reendothelialization and endothelial progenitor cell mobilization.  Am J Pathol. 2006;  169 1855-1862
  • 31 Ben-Shoshan J, George J. Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials.  Pharmacol Ther. 2007;  115 25-36
  • 32 Cao R, Eriksson A, Kubo H. et al . Comparative evaluation of FGF‐2-, VEGF‐A-, and VEGF‐C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability.  Circ Res. 2004;  94 664-670
  • 33 Satoru N, Hiroshi N, Yoko T, Go W. Protective effect of basic fibroblast growth factor against myocyte death and arrhythmias in acute myocardial infarction in rats.  Circ J. 2003;  67 334-339

Prof. Wei Meng

Shanghai Sixth Hospital, Shanghai JiaoTong University School of Medicine
The Division of Cardiology

No. 600, Yishan Road

200233 Shanghai

China

Fax: + 86 21 64 70 19 32

Email: drweimeng@hotmail.com

    >