Gesundheitswesen 2008; 70(2): 88-97
DOI: 10.1055/s-2008-1046775
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Raumluftqualität in Schulen - Belastung von Klassenräumen mit Kohlendioxid (CO2), flüchtigen organischen Verbindungen (VOC), Aldehyden, Endotoxinen und Katzenallergenen

Air Quality in Schools - Classroom Levels of Carbon Dioxide (CO2), Volatile Organic Compounds (VOC), Aldehydes, Endotoxins and Cat AllergenH. Fromme 1 , D. Heitmann 2 , S. Dietrich 1 , R. Schierl 3 , W. Körner 2 , M. Kiranoglu 1 , A. Zapf 4 , D. Twardella 1
  • 1Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Sachgebiet Umweltmedizin, Oberschleißheim
  • 2Bayerisches Landesamt für Umwelt, Referat Organische Analytik, Augsburg
  • 3Institut und Poliklinik für Arbeits- und Umweltmedizin, Ludwig-Maximilians-Universität, München
  • 4Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Institut für Gesundheit und Ernährung, Oberschleißheim
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. März 2008 (online)

Zusammenfassung

Kinder müssen als besonders empfindlich gegenüber Schadstoffen angesehen werden und verbringen einen großen Zeitanteil in Schulen. Vor diesem Hintergrund wurde von Dezember 2004 bis Juli 2005 die Innenraumluftqualität von 92 Klassenräumen (Winter) bzw. 76 Klassenräumen (Sommer) von Schulen in Süd-Bayern untersucht. Ziel war es, die Innenraumluftqualität durch Messung von Klimaparametern (Temperatur, relative Feuchte), dem Indikator Kohlendioxid (CO2) und leicht flüchtigen organischen Substanzen (VOC, Carbonylverbindungen) zu beschreiben. Darüber hinaus sollten die Katzenallergene (Fel d1) und Endotoxine (LAL-Test) im Fußbodenstaub der Schulräume bestimmt werden. Daten zu den Raum- und Gebäudecharakteristika wurden mit einem Fragebogen erhoben. Die Probenahme erfolgte während der Unterrichtszeit. Die medianen CO2-Innenraumluftgehalte bewegten sich im Winter in einem Bereich von 598 bis 4 172 ppm und im Sommer deutlich niedriger zwischen 480 und 1 875 ppm. Während in der Wintermessperiode die Tagesmediane in 92% der Klassenräume 1 000 ppm überschritten, waren es im Sommer lediglich 28%. Über 1 500 ppm lagen im Winter 60% der Tagesmediane der Klassenräume und in der Sommermessperiode 9%. Es zeigte sich, dass eine größere Zahl an Nutzern, eine kleinere Raumgröße und ein kleineres Raumvolumen signifikant mit der Verschlechterung der Luftqualität im Sinne eines Anstiegs des CO2 einhergeht. Die TVOC-Gehalte (total volatile organic compounds) in den Schulklassen bewegten sich in einem Bereich von 110 bis 1 000 μg/m3 (Median im Winter: 345 μg/m3 und im Sommer 260 μg/m3). Von den Carbonylverbindungen konnten insbesondere Aceton, Formaldehyd und Acetaldehyd mit Gehalten von 14,0 bis 911 μg/m3 bzw. 3,1 bis 46,1 μg/m3 und 2,9 bis 78 μg/m3 in allen Räumen bestimmt werden. Andere Aldehyde waren deutlich seltener nachzuweisen. Die medianen Katzenallergen-Konzentrationen lagen im Winter bei 485 ng/g Staub (20 bis 45 160 ng/g) und im Sommer bei 417 ng/g (40-7 470 ng/g), wobei sich kein statistisch bedeutsamer Unterschied zwischen den Messperioden ergab. Die Allergengehalte waren in beiden Messzeiträumen in Räumen mit Teppichböden signifikant höher als in solchen mit glattem Bodenbelag. Das Raumvolumen, die Raumfläche und Raumklimaparameter stellen keine bedeutsamen Einflussfaktoren dar. Die medianen Endotoxingehalte lagen im Winter mit 19,7 EU/mg Staub (6,6 bis 154 EU/mg) signifikant niedriger als in der Sommermessperiode mit 32,2 EU/mg (9,6 bis 219 EU/mg). Die Gehalte waren nicht abhängig von der Art des Bodenbelags, dem Raumvolumen, der Raumfläche und den bestimmten Raumklimaparametern. Insgesamt weisen die Messergebnisse für die VOC, Aldehyde, Ketone und Endotoxine in bayerischen Klassenräumen, von Einzelfällen abgesehen, auf ein eher niedriges Belastungsniveau hin. Die in Schulinnenräumen beobachteten Katzenallergengehalte sollten unter präventiven Gesichtspunkten als Expositionsmöglichkeit beachtet werden.

Abstract

Children are assumed to be more vulnerable to health hazards and spend a large part of their time in schools. To assess the exposure situation in this microenvironment, we evaluated the indoor air quality in winter 2004/5 in 92 classrooms, and in 75 classrooms in summer 2005 in south Bavaria, Germany. Indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various volatile organic compounds, aldehydes and ketones were measured. Additionally, cat allergen (Fel d1) and endotoxin (LAL-test) were analysed in the settled dust of school rooms. Data on room and building characteristics were collected by use of a standardised form. Only data collected during teaching hours were considered in analysis. The median indoor CO2 concentration in the classrooms ranged in the winter and summer period from 598 to 4 172 ppm and 480 to 1 875 ppm, respectively. While during the winter period in 92% of the classrooms the CO2 daily medians went above 1 000 ppm, the percentage of classrooms with increased CO2 concentration fell to 28% in summer. In winter, in 60% of classes the daily median CO2 concentration exceeded 1 500 ppm, while in summer this threshold was reached by only 9%. A high concentration of CO2 was associated with a high number of pupils, a low room surface area and a low room volume. The levels of total volatile organic compounds (TVOC) in classrooms ranged between 110 and 1 000 μg/m3 (median in winter 345 μg/m3, in summer 260 μg/m3). Acetone, formaldehyde and acetaldehyde were measured in concentrations from 14.0 to 911 μg/m3, from 3.1 to 46.1 μg/m3, and from 2.9 to 78 μg/m3, respectively. The other aldehydes were detected in minor amounts only. The median Fel d1 level in winter was 485 ng/g dust (20 to 45 160 ng/g) and in summer it was 417 ng/g (40-7 470 ng/g). We observed no marked differences between the two sampling periods and between smooth floors and rooms with carpeted floors. No differences were found according to room surface area and room volume. The median endotoxin contents in winter and summer were 19.7 EU/mg dust (6.6 to 154 EU/mg) and 32.2 EU/mg (9.6 to 219 EU/mg), respectively. The levels varied significantly between the sampling periods, but were independent of room surface area, room volume and surface floorings. Overall the results of VOC, aldehydes, ketones and endotoxin indicate, in general, a low exposure level in classrooms. The observed concentrations of cat allergens should be considered as a meaningful exposure route and thus could be tackled within preventive programs.

Literatur

  • 1 Seppänen OA, Fisk WJ. Summary of human responses to ventilation.  Indoor Air. 2004;  ((Suppl. 7)) 102-118
  • 2 Wargocki P, Wyon D, Sundell J, Clausen G, Fanger P. The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity.  Indoor Air. 2000;  10 222-236
  • 3 Kajtár L, Herczeg L, Láng E. Examination of influence of CO2 concentration by scientific methods on the laboratory. Proceedings of Healthy Building Conference. Singapore 2003
  • 4 Norbäck D, Torgén M, Edling C. Volatile organic compounds, respirable dust, and personal factors related to prevalence and incidence of sick building syndrome in primary schools.  Brit J Indust Med. 1990;  47 733-741
  • 5 Apte MG, Fisk WJ, Daisey JM. Associations between indoor CO2 concentrations and Sick Building Syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data.  Indoor Air. 2000;  10 246-257
  • 6 Kinshella MR, Dyke MV Van, Douglas KE, Martyny JW. Perception of indoor air quality associated with ventilation system types in elementary schools.  Appl Occup Environ Health. 2001;  16 952-960
  • 7 Seppänen OA, Fisk WJ. Association of ventilation system type with SBS symptoms in office workers.  Indoor Air. 2002;  12 98-112
  • 8 Daisey JM, Angell WJ, Apte MG. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information.  Indoor Air. 2003;  13 53-64
  • 9 Shaughnessy RJ, Haverinen-Shaughnessy U, Nevalainen A, Moschandreas D. A preliminary study on the association between ventilation rates in classrooms and student performance.  Indoor Air. 2006;  16 465-468
  • 10 Erdmann CA, Apte MG. Mucous membrane and lower respiratory building related symptoms in relation to indoor carbon dioxide concentrations in the 100-building BASE dataset.  Indoor Air. 2004;  ((Suppl. 8)) 127-134
  • 11 Berge M, Munir AK, Dreborg S. Concentrations of cat (Fel d1), dog (Can f1) and mite (Der f1 and Der p1) allergens in the clothing and school environment of Swedish schoolchildren with and without pets at home.  Pediatr Allergy Immunol. 1998;  9 25-30
  • 12 Almqvist C, Larsson PH, Egmar AC, Hedren M, Malmberg P, Wickman M. School as a risk environment for children allergic to cats and a site for transfer of cat allergen to homes.  J Allergy Clin Immunol. 1999;  103 1012-1017
  • 13 Instanes C, Hetland G, Berntsen S, Lovik M, Nafstad P. Allergens and endotoxin in settled dust from day-care centers and schools in Oslo, Norway.  Indoor Air. 2005;  15 356-362
  • 14 Munir AK, Einarsson R, Schou C, Dreborg SK. Allergens in school dust. I. The amount of the major cat (Fel d I) and dog (Can f I) allergens in dust from Swedish schools is high enough to probably cause perennial symptoms in most children with asthma who are sensitized to cat and dog.  J Allergy Clin Immunol. 1993;  91 1067-1074
  • 15 Patchett K, Lewis S, Crane J, Fitzharris P. Cat allergen (Fel d 1) levels on school children’s clothing and in primary school classrooms in Wellington, New Zealand.  J Allergy Clin Immunol. 1997;  100 755-759
  • 16 Perzanowski MS, Ronmark E, Nold B, Lundback B, Platts-Mills TA. Relevance of allergens from cats and dogs to asthma in the northernmost province of Sweden: schools as a major site of exposure.  J Allergy Clin Immunol. 1999;  103 1018-1024
  • 17 Smedje G, Norback D. Incidence of asthma diagnosis and self-reported allergy in relation to the school environment - a four-year follow-up study in schoolchildren.  Int J Tuberc Lung Dis. 2001a;  5 1059-1066
  • 18 Ritz BR, Hoelscher B, Frye C, Meyer I, Heinrich J. Allergic sensitization owing to “second-hand” cat exposure in schools.  Allergy. 2002;  57 357-361
  • 19 Almqvist C, Wickman M, Perfetti L, Berglind N, Renstrom A, Hedren M, Larsson K, Hedlin G, Malmberg P. Worsening of asthma in children allergic to cats, after indirect exposure to cat at school.  Am J Respir Crit Care Med. 2001;  163 694-698
  • 20 Fromme H, Dietrich S, Twardella D, Heitmann D, Schierl R, Liebl B, Rüden H. Particulate matter in the indoor air of classrooms - exploratory results from Munich and surrounding.  Atmos Environ. 2007;  41 854-866
  • 21 Waser M, Schierl R, Mutius E von, Maisch S, Carr D, Riedler J, Eder W, Schreuer M, Nowak D, Braun-Fahrlander C. ALEX Study Team . Determinants of endotoxin levels in living environments of farmers’ children and their peers from rural areas.  Clin Exp Allergy. 2004;  34 389-397
  • 22 Luczynska CM, Arruda LK, Platts-Mills TAE, Miller JD, Lopez M, Chapman MD. A two-site monoclonal antibody ELISA for the quantification of the major Dermatophagoides spp. Allergens, Der p I and Der f I.  J Immunol Methods. 1998;  118 227-235
  • 23 Seppänen OA, Fisk WJ, Mendell MJ. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings.  Indoor Air. 1999;  9 226-252
  • 24 Lahrz T, Piloty M, Oddoy A, Fromme H. Gesundheitlich bedenkliche Substanzen in öffentlichen Einrichtungen in Berlin. Untersuchungen zur Innenraumluftqualität in Berliner Schulen. Bericht des Instituts für Lebensmittel, Arzneimittel und Tierseuchen, Fachbereich Umwelt- und Gesundheitsschutz. Berlin 2003
  • 25 Grams H, Hehl O, Dreesman J. Aufatmen in Schulen. Untersuchungsergebnisse und Modellierungsansätze zur Raumluftqualität in Schulen.  Gesundheitswesen. 2003;  64 447-456
  • 26 Fromme H, Lahrz T, Piloty M, Pfeiler P, Honigmann I, Gebhardt H, Oddoy A. Schwerpunktprogramm - Gesundheitlich bedenkliche Substanzen in öffentlichen Einrichtungen in Berlin. Bericht des Instituts für Lebensmittel, Arzneimittel und Tierseuchen, Fachbereich Umwelt- und Gesundheitsschutz. Berlin 2002
  • 27 Heinzow B, Mohr S, Mohr-Kriegshammer K, Janz H. Organische Schadstoffe in der Innenraumluft von Schulen und Kindergärten. VDI-Bericht 1122, Seite 269-281. VDI-Verlag, Berlin 1994
  • 28 Ramachandran G, Adgate LJ, Banerjee S, Church TR, Jones D, Frederickson A, Sexton K. Indoor air quality in two urban elementary schools-measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity.  J Occup Environ Hyg.. 2005;  2 553-566
  • 29 Foarde K, Berry M. Comparison of biocontaminant levels associated with hard vs. carpet floors in nonproblem schools: results of a year long study.  J Expo Anal Environ Epidemiol. 2004;  14 ((Suppl 1)) S41-S48
  • 30 Heinrich J, Holscher B, Douwes J, Richter K, Koch A, Bischof W, Fahlbusch B, Kinne RW, Wichmann HE. INGA Study Group . Reproducibility of allergen, endotoxin and fungi measurements in the indoor environment.  J Expo Anal Environ Epidemiol. 2003;  13 152-160
  • 31 Munir AK, Einarsson R, Dreborg S. Variability of airborne cat allergen, Fel d1, in a public place.  Indoor Air. 2003;  13 353-358
  • 32 Dybendal T, Wedberg WC, Elsayed S. Dust from carpeted and smooth floors. IV. Solid material, proteins and allergens collected in the different filter stages of vacuum cleaners after ten days of use in schools.  Allergy. 1991;  46 427-435
  • 33 Tortolero SR, Bartholomew LK, Tyrrell S, Abramson SL, Sockrider MM, Markham CM, Whitehead LW, Parcel GS. Environmental allergens and irritants in schools: a focus on asthma.  J Sch Health. 2002;  72 33-38
  • 34 Smedje G, Norback D. Irritants and allergens at school in relation to furnishings and cleaning.  Indoor Air. 2001b;  11 127-133
  • 35 Meyer HW, Würtz H, Suadicani P, Valbjorn O, Sigsgaard T, Gyntelberg F. Molds in floor dust and building-related symptoms in adolescent school children.  Indoor Air. 2004;  14 65-72
  • 36 Allermann L, Wilkins CK, Madsen AM. Inflammatory potency of dust from the indoor environment and correlation to content of NAGase and fungi.  Toxicol In Vitro. 2006;  20 1522-1531
  • 37 Abramson SL, Turner-Henson A, Anderson L, Hemstreet MP, Bartholomew LK, Joseph CL, Tang S, Tyrrell S, Clark NM, Ownby D. Allergens in school settings: results of environmental assessments in 3 city school systems.  J Sch Health. 2006;  76 246-249
  • 38 Godish DR, Russell C. Prevalence and quantity of selected allergens in Indiana elementary school classrooms.  Proceedings Indoor Air 99. 1999;  2Vol1 273-278
  • 39 Amr S, Bollinger ME, Myers M, Hamilton RG, Weiss SR, Rossman M, Osborne L, Timmins S, Kimes DS, Levine ER, Blaisdell CJ. Environmental allergens and asthma in urban elementary schools.  Ann Allergy Asthma Immunol. 2003;  90 34-40
  • 40 Dybendal T, Elsayed S. Dust from carpeted and smooth floors. V. Cat (Fel d I) and mite (Der p I and Der f I) allergen levels in school dust. Demonstration of the basophil histamine release induced by dust from classrooms.  Clin Exp Allergy. 1992;  22 1100-1106
  • 41 Smedje G, Norback D, Edling C. Asthma among secondary schoolchildren in relation to the school environment.  Clin Exp Allergy. 1997;  27 1270-1278
  • 42 Mi Y-H, Elfman L, Eriksson S, Johansson M, Smedje G, Tao J, Mi Y-L, Norbäck D. Indoor allergens in schools: a comparison between Sweden and China.  Proceedings Indoor Air 02. 2002;  449-454
  • 43 Kim JL, Elfman L, Mi Y, Johansson M, Smedje G, Norback D. Current asthma and respiratory symptoms among pupils in relation to dietary factors and allergens in the school environment.  Indoor Air. 2005;  15 170-182
  • 44 Zhao ZH, Elfman L, Wang ZH, Zhang Z, Norbäck D. A comparative study of asthma, pollen, cat and dog allergy among pupils and allergen levels in schools in Taiyuan city, China, and Uppsala, Sweden.  Indoor Air. 2006;  16 404-413

Korrespondenzadresse

H. Fromme

Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit

Sachgebiet Umweltmedizin

Veterinärstrasse 2

85764 Oberschleißheim

eMail: hermann.fromme@lgl.bayern.de

    >