Horm Metab Res 2008; 40(6): 386-390
DOI: 10.1055/s-2008-1058091
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Maternal Perinatal Undernutrition Impairs Chromaffin Cells Proliferation in the Postnatal Rat

O. Molendi-Coste 1 , J. Mairesse 1 , N. Aubert 2 , H. Ghzili 2 , C. Abbadie 3 , H. Vaudry 2 , B. Gonzalez 4 , Y. Anouar 2 , D. Vieau 1 , C. Breton 1 , C. Laborie 1
  • 1Unité de Neurosciences et Physiologie Adaptatives UPRES-EA 4052, Equipe dénutritions maternelles périnatales, Université Lille 1, Villeneuve d’Ascq Cedex, France
  • 2INSERM U413, Laboratoire de Neuroendocrinologie Cellulaire et Moléculaire, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP 23), Université de Rouen, Mont-Saint-Aignan, France
  • 3UMR8117 CNRS, Institut Pasteur de Lille, Institut de Biologie de Lille, Lille, France
  • 4INSERM AVENIR UPRES-EA 2122, Mécanismes et traitements des troubles du développement cérébral, Faculté de Médecine et de Pharmacie, Université de Rouen, France
Further Information

Publication History

received 29.05.2007

accepted 30.10.2007

Publication Date:
14 March 2008 (online)

Abstract

Numerous data show that malnutrition during early life programs chronic diseases in adulthood. Many of these disorders may result from alterations in the development of neuroendocrine systems, such as the hypothalamo-pituitary-adrenal axis and the sympathoadrenal system. We have previously reported that maternal 50% food restriction during late pregnancy and lactation reduces adrenal weight and impairs chromaffin cell differentiation in male rats at weaning. In addition, maternal undernutrition modifies the expression of several genes involved in proliferation and apoptosis. This study therefore investigated the impact of maternal food restriction on adrenal cell growth in the late postnatal rat. Histological analysis showed that the number of proliferating chromaffin cells assessed by nuclear labelling with BrdU was reduced by 45%, whereas the level of apoptosis visualised by caspase-3 immunoreactivity was increased by 340% in adrenal medulla of offspring from undernourished mothers. In contrast, maternal food restriction did not affect proliferation and apoptosis in cortical cells of rats. These developmental changes were associated with overexpression of TGFβ2. These data show that perinatal undernutrition impairs the balance between chromaffin cell proliferation and apoptosis. These modifications may lead to “malprogramming” of adrenal medulla development, which could contribute to the pathogenesis of chronic diseases in adulthood.

References

  • 1 Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life.  Lancet. 1993;  341 938-941
  • 2 Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming.  Hypertension. 2006;  47 502-508
  • 3 Breant B, Gesina E, Blondeau B. Nutrition, glucocorticoids and pancreas development.  Horm Res. 2006;  65 ((Suppl 3)) 98-104
  • 4 Desai M, Gayle D, Babu J, Ross MG. Permanent reduction in heart and kidney organ growth in offspring of undernourished rat dams.  Am J Obstet Gynecol. 2005;  193 1224-1232
  • 5 Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids.  J Physiol. 2006;  572 31-44
  • 6 Lesage J, Sebaai N, Leonhardt M, Dutriez-Casteloot I, Breton C, Deloof S, Vieau D. Perinatal maternal undernutrition programs the offspring hypothalamo-pituitary-adrenal (HPA) axis.  Stress. 2006;  9 183-198
  • 7 Vieau D, Sebaai N, Léonhart M, Dutriez-Casteloot I, Molendi-Coste O, Laborie C, Breton C, Deloof S, Lesage J. HPA axis programming maternal undernutrition in the male offspring.  Psychoneuroendocrinology. 2007;  32 ((Suppl 1)) S16-S20
  • 8 Phillips DI. Fetal programming of the neuroendocrine response to stress: links between low birth weight and the metabolic syndrome.  Endocr Res. 2004;  30 819-826
  • 9 Young JB. Programming of sympathoadrenal function.  Trends Endocrinol Metab. 2002;  13 381-385
  • 10 Leonhardt M, Lesage J, Dufourny L, Dickes-Coopman A, Montel V, Dupouy JP. Perinatal maternal food restriction induces alterations in hypothalamo-pituitary-adrenal axis activity and in plasma corticosterone-binding globulin capacity of weaning rat pups.  Neuroendocrinology. 2002;  75 45-54
  • 11 Lesage J, Blondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat.  Endocrinology. 2001;  142 1692-1702
  • 12 Molendi-Coste O, Grumolato L, Laborie C, Lesage J, Maubert E, Ghzili H, Vaudry H, Anouar Y, Breton C, Vieau D. Maternal perinatal undernutrition alters neuronal and neuroendocrine differentiation in the rat adrenal medulla at weaning.  Endocrinology. 2006;  147 3050-3059
  • 13 Rahhal B, Dunker N, Combs S, Krieglstein K. Isoform-specific role of transforming growth factor-beta2 in the regulation of proliferation and differentiation of murine adrenal chromaffin cells in vivo.  J Neurosci Res. 2004;  78 493-498
  • 14 Jung DJ, Bong JJ, Baik M. Extracellular proteinase inhibitor-accelerated apoptosis is associated with B cell activating factor in mammary epithelial cells.  Exp Cell Res. 2004;  292 115-122
  • 15 Declercq J, Hensen K, Ven WJ Van De, Chavez M. PLAG proteins : how they influence apoptosis and cell proliferation.  Ann NY Acad Sci. 2003;  1010 264-265
  • 16 Breton C, Pechoux C, Morel G, Zingg HH. Oxytocin receptor messenger ribonucleic acid: characterization, regulation, and cellular localization in the rat pituitary gland.  Endocrinology. 1995;  136 2928-2936
  • 17 Mitani F, Mukai K, Miyamoto H, Suematsu M, Ishimura Y. Development of functional zonation in the rat adrenal cortex.  Endocrinology. 1999;  140 3342-3353
  • 18 Unsicker K. The chromaffin cell: paradigm in cell, developmental and growth factor biology.  J Anat. 1993;  183 207-222
  • 19 Coupland RE, Tomlinson A. The development and maturation of adrenal medullary chromaffin cells of the rat in vivo: a descriptive and quantitative study.  Int J Dev Neurosci. 1989;  7 419-438
  • 20 Schober A, Krieglstein K, Unsicker K. Molecular cues for the development of adrenal chromaffin cells and their preganglionic innervation.  Eur J Clin Invest. 2000;  30 ((Suppl 3)) 87-90
  • 21 Forander P, Krieglstein K, Soderstrom S, Stromberg I. Mutual induction of TGFbeta 1 and NGF after treatment with NGF or TGFbeta 1 in grafted chromaffin cells of the adrenal medulla.  Exp Neurol. 2000;  164 303-313
  • 22 Degterev A, Boyce M, Yuan J. A decade of caspases.  Oncogene. 2003;  22 8543-8567
  • 23 Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of CED3-related cysteine protease caspase-3/CPP32.  Proc Natl Acad Sci USA. 2000;  97 13390-13395
  • 24 Vaudry D, Cottet-Rousselle C, Basille M, Falluel-morel A, Fournier A, Vaudry H, Gonzalez BJ. Pituitary adenylate cyclase-activating polypeptide inhibits caspase-3 activity but does not protect cerebellar granule neurons against beta-amyloid (25-35)-induced apotosis.  Regul Pept. 2004;  123 43-49

Correspondence

Dr. C. Laborie

UPRES-EA 4052

Université Lille 1

59655 Villeneuve d'Ascq Cedex

France

Phone: +33/3/20 43 40 73

Fax: +33/3/20 33 63 49

Email: Christine.Laborie@univ-lille 1.fr

    >