Zusammenfassung
Tumorerkrankungen der Haut werden zentral durch die Fähigkeit
der Tumorzellen, im Rahmen von Tumorinitiation und -progression
Apoptoseresistenz zu erlangen, befördert. So trägt die
Apoptoseresistenz entscheidend dazu bei, dass Hauttumorerkrankungen wie das
maligne Melanom und das Plattenepithelkarzinom im metastasierten Zustand
therapeutisch nur schwer beeinflussbar sind und eine kurative Behandlung dieser
Tumorstadien erschwert ist. Ebenso bedingt das multilokuläre Auftreten von
Basalzellkarzinomen eine nicht unerhebliche Komorbidität, sodass auch
diese Entität neuer Therapieformen bedarf. In den letzten Jahren mehrt
sich die Evidenz, dass durch gezielte Beeinflussung zentraler Schaltstellen der
apoptotischen Signaltransduktionskaskade eine bessere Behandlung
dermatoonkologischer Patienten ermöglicht werden könnte. Dazu
gehören p53-Reaktivatoren, Sonic-Hedgehog-Antagonisten, aber auch
Bcl-2-Antagonisten, IAP-Antagonisten oder Todesrezeptor-Agonisten, die sich
gegenwärtig in der präklinischen oder frühen klinischen
Erprobung befinden. Der Artikel fasst den gegenwärtigen Stand zusammen und
gibt einen Ausblick auf potenzielle mechanismusbasierte Therapieoptionen zur
Durchbrechung der Apoptoseresistenz bei dermatoonkologischen Erkrankungen.
Abstract
The prognosis of cutaneous neoplasia such as squamous cell carcinoma
(SCC), basal cell carcinoma (BCC), or malignant melanoma (MM) are severely
influenced by the ability of tumor cells to develop or maintain apoptosis
resistance throughout tumor progression and metastasis. Furthermore, the
ability to overcome apoptosis resistance is a critical factor that determines
therapeutic failure or success in metastatic SCC or MM. Moreover apoptosis
resistence is a major obstacle to curative efforts in these dermatooncologic
diseases. In BCC, the multitude of tumors results in a substantial comorbidity
that require innovative treatment options. Over the past years, there is
increasing evidence that targeted therapy aiming at the apoptotic signalling
cascade in a tumor type-specific manner may result in a better success of
oncological treatment. In this context, reactivators of p53, antagonists of
sonic hedgehog, but also Bcl-2- or IAP antagonists as well as death receptor
agonists that are currently in preclinical or early clinical development may
prove to be useful in dermatooncology. The article explains the current
knowledge in this rapidly moving field and summarizes potential mechanism-based
therapeutic options to overcome apoptosis resistance in the different forms of
skin cancer.
Literatur
- 1
Aszterbaum M, Epstein J, Oro A. et al .
Ultraviolet and ionizing radiation enhance the growth of BCCs
and trichoblastomas in patched heterozygous knockout mice.
Nat Med.
1999;
5
1285-1291
- 2
Athar M, Tang X, Lee J L. et al .
Hedgehog signalling in skin development and cancer.
Exp Dermatol.
2006;
15
667-677
- 3
Bigelow R L, Jen E Y, Delehedde M. et al .
Sonic hedgehog induces epidermal growth factor dependent
matrix infiltration in HaCaT keratinocytes.
J Invest Dermatol.
2005;
124
457-465
- 4
Boukamp P.
UV-induced skin cancer: similarities – variations.
J Dtsch Dermatol Ges.
2005;
3
493-503
- 5
Braakhuis B J, Leemans C R, Brakenhoff R H.
Expanding fields of genetically altered cells in head and
neck squamous carcinogenesis.
Semin Cancer Biol.
2005;
15
113-120
- 6
Brantsch K D, Meisner C, Schonfisch B. et al .
Analysis of risk factors determining prognosis of cutaneous
squamous-cell carcinoma: a prospective study.
Lancet Oncol.
2008;
9
713-720
- 7
Bykov V J, Issaeva N, Shilov A. et al .
Restoration of the tumor suppressor function to mutant p53 by
a low-molecular-weight compound.
Nat Med.
2002;
8
282-288
- 8
Chalah A, Khosravi-Far R.
The mitochondrial death pathway.
Adv Exp Med Biol.
2008;
615
25-45
- 9
Daniel P T, Schulze-Osthoff K, Belka C, Guner D.
Guardians of cell death: the Bcl-2 family proteins.
Essays Biochem.
2003;
39
73-88
- 10
Degterev A, Yuan J.
Expansion and evolution of cell death programmes.
Nat Rev Mol Cell Biol.
2008;
9
378-390
- 11
Fecker L F, Geilen C C, Tchernev G. et al .
Loss of proapoptotic Bcl-2-related multidomain proteins in
primary melanomas is associated with poor prognosis.
J Invest Dermatol.
2006;
126
1366-1371
- 12
Geserick P, Drewniok C, Hupe M. et al .
Suppression of cFLIP is sufficient to sensitize human
melanoma cells to TRAIL- and CD95L-mediated apoptosis.
Oncogene.
2008;
27
3211-3220
- 13
Green C L, Khavari P A.
Targets for molecular therapy of skin cancer.
Semin Cancer Biol.
2004;
14
63-69
- 14
Hanahan D, Weinberg R A.
The hallmarks of cancer.
Cell.
2000;
100
57-70
- 15
Huntzicker E G, Estay I S, Zhen H. et al .
Dual degradation signals control Gli protein stability and
tumor formation.
Genes Dev.
2006;
20
276-281
- 16
Ikram M S, Neill G W, Regl G. et al .
GLI2 is expressed in normal human epidermis and BCC and
induces GLI1 expression by binding to its promoter.
J Invest Dermatol.
2004;
122
1503-1509
- 17
Irmler M, Thome M, Hahne M. et al .
Inhibition of death receptor signals by cellular FLIP.
Nature.
1997;
388
190-195
- 18
Johnson R L, Rothman A L, Xie J. et al .
Human homolog of patched, a candidate gene for the basal cell
nevus syndrome.
Science.
1996;
272
1668-1671
- 19
Kump E, Ji J, Wernli M, Hausermann P, Erb P.
Gli2 upregulates cFlip and renders basal cell carcinoma cells
resistant to death ligand-mediated apoptosis.
Oncogene.
2008;
27
3856-3864
- 20
Lavrik I N, Golks A, Krammer P H.
Caspases: pharmacological manipulation of cell death.
J Clin Invest.
2005;
115
2665-2672
- 21
Leiter U, Garbe C.
Epidemiology of melanoma and nonmelanoma skin cancer –
the role of sunlight.
Adv Exp Med Biol.
2008;
624
89-103
- 22
Leverkus M, Diessenbacher P, Geserick P.
FLIPing the coin? Death receptor-mediated signals during skin
tumorigenesis.
Exp Dermatol.
2008;
17
614-622
- 23
Leverkus M, Neumann M, Mengling T. et al .
Regulation of tumor necrosis factor-related
apoptosis-inducing ligand sensitivity in primary and transformed human
keratinocytes.
Cancer Res.
2000;
60
553-559
- 24
Meier F, Busch S, Lasithiotakis K. et al .
Combined targeting of MAPK and AKT signalling pathways is a
promising strategy for melanoma treatment.
Br J Dermatol.
2007;
156
1204-1213
- 25
Oltersdorf T, Elmore S W, Shoemaker A R. et al .
An inhibitor of Bcl-2 family proteins induces regression of
solid tumours.
Nature.
2005;
435
677-681
- 26
Regl G, Kasper M, Schnidar H. et al .
Activation of the BCL2 promoter in response to Hedgehog/GLI
signal transduction is predominantly mediated by GLI2.
Cancer Res.
2004;
64
7724-7731
- 27
Regl G, Neill G W, Eichberger T. et al .
Human GLI2 and GLI1 are part of a positive feedback mechanism
in basal cell carcinoma.
Oncogene.
2002;
21
5529-5539
- 28
Selivanova G, Wiman K G.
Reactivation of mutant p53: molecular mechanisms and
therapeutic potential.
Oncogene.
2007;
26
2243-2254
- 29
Sinha S, Chen J K.
Purmorphamine activates the Hedgehog pathway by targeting
smoothened.
Nat Chem Biol.
2006;
2
29-30
- 30
Soengas M S, Lowe S W.
Apoptosis and melanoma chemoresistance.
Oncogene.
2003;
22
138-3151
- 31
Taipale J, Chen J K, Cooper M K. et al .
Effects of oncogenic mutations in smoothened and patched can
be reversed by cyclopamine.
Nature.
2000;
406
1005-1009
- 32
Tang X, Zhu Y, Han L. et al .
CP-31398 restores mutant p53 tumor suppressor function and
inhibits UVB-induced skin carcinogenesis in mice.
J Clin Invest.
2007;
117
3753-3764
- 33
Tse C, Shoemaker A R, Adickes J. et al .
ABT-263: a potent and orally bioavailable Bcl-2 family
inhibitor.
Cancer Res.
2008;
68
3421-3428
- 34
van Loo G, Saelens X, van Gurp M. et al .
The role of mitochondrial factors in apoptosis: a Russian
roulette with more than one bullet.
Cell Death Differ.
2002;
9
1031-1042
- 35
Vaux D L, Silke J.
IAPs, RINGs and ubiquitylation.
Nat Rev Mol Cell Biol.
2005;
6
287-297
- 36
Ventura A, Kirsch D G, McLaughlin M E. et al .
Restoration of p53 function leads to tumour regression in
vivo.
Nature.
2007;
445
661-665
- 37
von Hoff D D, Rudin C M, LoRusso P M. et al .
Efficacy data of GDC-0449, a systemic Hedgehog pathway
antagonist, in a first-in-human, first-in-class Phase I study with locally
advanced, multifocal or metastatic basal cell carcinoma patients.
AACR.
2008;
Abstract LBG-138
- 38
Weisz L, Damalas A, Liontos M. et al .
Mutant p53 enhances nuclear factor kappaB activation by tumor
necrosis factor alpha in cancer cells.
Cancer Res.
2007;
67
2396-2401
- 39
Wiman K G.
Restoration of wild-type p53 function in human tumors:
strategies for efficient cancer therapy.
Adv Cancer Res.
2007;
97
321-338
- 40
Wolfrum C, Shi S, Jayaprakash K N. et al .
Mechanisms and optimization of in vivo delivery of lipophilic
siRNAs.
Nat Biotechnol.
2007;
25
1149-1157
- 41
Xue W, Zender L, Miething C. et al .
Senescence and tumour clearance is triggered by p53
restoration in murine liver carcinomas.
Nature.
2007;
445
656-660
1 Vortrag anlässlich des Jahressymposiums der Berliner Stiftung
für Dermatologie am 31. 5. 2008.
Univ.-Prof. Martin Leverkus
Klinik für Dermatologie und
Venerologie
Otto-von-Guericke-Universität
Leipziger Straße 44
39120 Magdeburg
Email: martin.leverkus@med.ovgu.de