Zusammenfassung
Der Transforming Growth Factor-β (TGF-β) stellt einen
potenten Wachstumsinhibitor bei normalen Melanozyten dar. Diese Funktion
scheint im Verlauf der Tumorgenese zunehmend verloren zu gehen, da viele
Melanomzellen durch TGF-β nur sehr schwach oder gar nicht gehemmt werden.
Beim Melanom wird der antiproliferative Signalweg des TGF-β häufig
aufgehoben, und die Produktion des TGF-β autokrin hochreguliert. Somit
kommt es zu einer Reihe parakriner Effekte, wie des extrazellulären
Matrixumbaus, der Neoangiogenese, und der Immunsuppression, die letztendlich
zum lokalen Tumorwachstum und zur Metastasierung führen. Die
Wechselwirkungen der TGF-β-signalübertragenden Smad Proteine mit
anderen Signalsystemen, wie der mitogenaktivierten Proteinkinasen, des SKI/SnoN
und des Proteinkinase-C-Systems, tragen möglicherweise zum Entweichen der
Melanomzellen von der TGF-β-Wachstumskontrolle bei. Die Abklärung der
molekularen Interaktionen des TGF-β-Signalweges wird möglicherweise
zu der Entwicklung neurer Konzepte für die Therapie des malignen Melanoms
beitragen.
Abstract
Transforming growth factor-β is a potent growth inhibitor for
normal melanocytes. This function is lost in the course of tumorigenesis, since
several melanoma cell lines are only slightly or not at all inhibited by
TGF-β. In melanoma, the transduction of antiproliferative signals by
TGF-β is often abolished, and the autocrine production of TGF-β
increased. By this way, several TGF-β-driven paracrine effects, such as
extracellular matrix remodeling, neoangiogenesis, and immunosuppression induce
local tumor growth and metastasis. The interaction of Smads, the major
TGF-β signaling proteins, with other signaling systems such as the
mitogen-activated protein kinases, the SKI/SnoN proteins, and the protein
kinase C family, possibly contributes to the escape of melanoma cells from
TGF-β growth control. Therefore, the clarification of the molecular
interactions of the TGF-β signaling pathway may further promote the
development of new treatment concepts for melanoma.
Literatur
- 1
Sporn M B, Roberts A B.
Autocrine growth factors and cancer.
Nature.
1985;
313
745-747
- 2
De Larco D E, Pigott D A, Lazarus J A.
Ectopic peptides released by a melanoma cell line that
modulate the transformed phenotype.
Proc Natl Acad Sci USA.
1985;
82
5015-5019
- 3
Roberts A B, Anzano M A, Wakefield L M. et al .
Type β transforming growth factor: A bifunctional
regulator of cellular growth.
Proc Natl Acad Sci USA.
1985;
82
119-123
- 4
Shipley G D, Pittelkow M R, Wille Jr J J. et al .
Reversible inhibition of normal human prokeratinocyte
proliferation by type beta transforming growth factor-growth inhibitor in
serum-free medium.
Cancer Res.
1986;
46
2068-2071
- 5
Kehrl J H, Wakefield L M, Roberts A B. et al .
Production of transforming growth factor β by human T
lymphocytes and its potential role in the regulation of T cell growth.
J Exp Med.
1986;
163
1037-1050
- 6
Kehrl J H, Taylor A S, Delsing G A. et al .
Further studies of the role of TGF-β in human B cell
function.
J Immunol.
1989;
143
1868-1874
- 7
Houck K A, Michalopoulos G K, Strom S C.
Introduction of Ha-ras oncogene into liver epithelial cells
and parenchymal hepatocytes confers resistance to the growth inhibitory effects
of TGF-β.
Oncogene.
1989;
4
19-25
- 8
Game S M, Huelsen A, Patel V. et al .
Progressive abrogation of TGF-beta 1 and EGF growth control
is associated with tumour progression in ras-transfected human
keratinocytes.
Int J Cancer.
1992;
52
461-470
- 9
Krasagakis K, Garbe C, Schrier P I, Orfanos C E.
Paracrine and autocrine regulation of human melanocyte and
melanoma cell growth by transforming growth factor beta in vitro.
Anticancer Res.
1994;
14
2565-2572
- 10
Rodeck U, Bossler A, Graeven U. et al .
Transforming growth factor β production and
responsiveness in normal human melanocytes and melanoma cells.
Cancer Res.
1994;
54
575-581
- 11
Krasagakis K, Krüger-Krasagakes S, Fimmel S. et al .
Desensitization of melanoma cells to autocrine TGF-β
isoforms.
J Cell Physiol.
1999;
178
179-187
- 12
Krasagakis K, Thölke D, Farthmann B. et al .
Elevated plasma levels of transforming growth factor
(TGF)-β 1 and TGF-β 2 in patients with disseminated malignant
melanoma.
Br J Cancer.
1998;
77
1492-1494
- 13
Tas F, Duranyildiz D, Oguz H. et al .
Circulating serum levels of angiogenic factors and vascular
endothelial growth factor receptors 1 and 2 in melanoma patients.
Melanoma Res.
2006;
16
405-411
- 14
Berking C, Takemoto R, Schaider H. et al .
Transforming Growth Factor-β 1 increases survival of
human melanoma through stroma remodelling.
Cancer Res.
2001;
61
8306-8316
- 15
Valenti R, Huber V, Filipazzi P. et al .
Human tumor-released microvesicles promote the
differentiation of myeloid cells with transforming growth
factor-β-mediated suppressive activity on T lymphocytes.
Cancer Res.
2006;
66
9290-9298
- 16
Ahmadzadeh M, Rosenberg S A.
TGF-β 1 attenuates the acquisition and expression of
effector function by tumor antigen-specific human memory CD8 T cells.
J Immunol.
2005;
174
5215-5223
- 17
Kaminska B, Wesolowska A, Danilkiewicz M.
TGF beta signalling and its role in tumour pathogenesis.
Acta Biochim Pol.
2005;
52
329-337
- 18
Javelaud D, Delmas V, Moller M. et al .
Stable overexpression of Smad7 in human melanoma cells
inhibits their tumorigenicity in vitro and in vivo.
Oncogene.
2005;
24
7624-7629
- 19
Mulder K M.
Role of Ras and MAPKs in TGF-β signaling.
Cytokine Growth Factor Rev.
2000;
11
23-35
- 20
Rodeck U, Nishiyama T, Mauviel A.
Independent regulation of growth and SMAD-mediated
transcription by transforming growth factor β in human melanoma
cells.
Cancer Res.
1999;
59
547-550
- 21
Reed J A, Lin Q, Chen D. et al .
SKI pathways inducing progression of human melanoma.
Cancer Metastasis Rev.
2005;
24
265-272
- 22
Mauviel A, Javelaud D, Le Scolan E. et al .
C-SKI expression in human melanoma cells does not antagonize
TGF-beta-dependent transcriptional responses.
J Invest Dermatol.
2007;
127
S50
- 23
Stavroulaki M, Kardassis D, Chatzaki E. et al .
Exposure of normal human melanocytes to a tumor promoting
phorbol ester reverses growth suppression by transforming growth factor
beta.
J Cell Physiol.
2008;
214
363-370
- 24
Chuang C C, Tan S K, Tai L K. et al .
Evidence for the involvement of protein kinase C in the
inhibition of prolactin gene expression by transforming growth factor- β
2.
Mol Pharmacol.
1998;
53
1054-1061
- 25
Yakymovych I, ten Dijke P, Heldin C H, Souchelnychkyi S.
Regulation of Smad signaling by protein kinase C.
FASEB J.
2001;
15
553-555
- 26
Schlingensiepen K H, Fischer-Blass B, Schmaus S, Ludwig S.
Antisense therapeutics for tumor treatment: the TGF-beta2
inhibitor AP 12 009 in clinical development against malignant
tumors.
Recent Results Cancer Res.
2008;
177
137-150
- 27
Nemunaitis J, Dillman R O, Schwarzenberger P O. et al .
Phase II study of belagenpumatucel-L, a transforming growth
factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in
non–small-cell lung cancer.
J Clin Oncol.
2006;
24
4721-4730
1 Vortrag anlässlich des Jahressymposiums der Berliner Stiftung
für Dermatologie am 31. 5. 2008.
Dr. med. Konstantin Krasagakis
Assistant
Professor
Hautklinik
Universitätskrankenhaus von
Heraklion
GR-71110 Heraklion
Griechenland
eMail: krasagak@med.uoc.gr