Synlett 2008(11): 1623-1626  
DOI: 10.1055/s-2008-1077876
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Insight into the Oxidation of Cyclododecane with Hydrogen Peroxide in the Presence of Iron-Substituted Polyoxotungstates

Isabel C. M. S. Santosa, Mário M. Q. Simõesa, M. Salete S. Balulaa,b, M. Graça P. M. S. Nevesa, José A. S. Cavaleiroa, Ana M. V. Cavaleiro*a,b
a Chemistry Department, University of Aveiro, Universidade de Aveiro, 3810-193 Aveiro, Portugal
b CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
Fax: +351(234)370084; e-Mail: anacavaleiro@ua.pt;
Further Information

Publication History

Received 28 January 2008
Publication Date:
11 June 2008 (online)

Abstract

The catalytic homogeneous oxidation of cyclododecane with hydrogen peroxide in the presence of tetrabutylammonium salts of iron-substituted Keggin-type polyoxotungstates of general formula (TBA)4HzXW11Fe(H2O)O39·nH2O (where X = P, Si, B, and z = 0-2) is described. In the reaction conditions reported, the corresponding alcohol, ketone, and hydroperoxide are obtained as the main reaction products. The catalytic activity of the anions with phosphorous, silicon, and boron is compared in different reaction conditions. These catalytic oxidation reactions seem to be radical processes, since they are totally inhibited in the presence of I2, a well-known radical scavenger.

    References and Notes

  • 1 Sheldon RA. Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds   Academic Press; New York: 1981. 
  • 2 Activation and Functionalization of Alkanes   Hill CL. Wiley; New York: 1989. 
  • 3 Catalytic Selective Oxidation   Oyama ST. Hightower JW. American Chemical Society; Washington DC: 1993. 
  • 4 Shilov AE. Shul’pin GB. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes   Kluwer; Dordrecht: 2000. 
  • 5 Baucherel X. Gonsalvi L. Arends IWCE. Ellwood S. Sheldon RA. Adv. Synth. Catal.  2004,  346:  286 
  • 6 Cavaleiro AMV. Pedrosa de Jesus JD. Nogueira HIS. Metal Clusters in Chemistry   Vol. 1:  Braunstein P. Oro LA. Raithbay PR. Wiley-VCH; Weinheim: 1999.  p.444 
  • 7 Hill CL. Prosser-McCartha CM. Coord. Chem. Rev.  1995,  143:  407 ; and references cited therein
  • 8 Neumann R. Prog. Inorg. Chem.  1998,  47:  317 ; and references cited therein
  • 9 Kozhevnikov IV. Chem. Rev.  1998,  98:  171 ; and references cited therein
  • 10 Schuchardt U. Cardoso D. Sercheli R. Pereira R. Cruz RS. Guerreiro MC. Mandelli D. Spinacé EV. Pires EL. Appl. Catal., A  2001,  211:  1 
  • 11 Catalytic Oxidations with Hydrogen Peroxide as Oxidant   Strukul G. Kluwer; Dordrecht: 1992. 
  • 12 Sanderson WR. Pure Appl. Chem.  2000,  72:  1289 
  • 13 Mizuno N. Nozaki C. Kiyoto I. Misono M. J. Am. Chem. Soc.  1998,  120:  9267 
  • 14 Simões MMQ. Conceição CMM. Gamelas JAF. Domingues PMDN. Cavaleiro AMV. Cavaleiro JAS. Ferrer-Correia AJV. Johnstone RAW. J. Mol. Catal. A: Chem.  1999,  144:  461 
  • 15 Domingues PMDN. Simões MMQ. Cardoso AM. Cavaleiro AMV. Cavaleiro JAS. Johnstone RAW. Ferrer-Correia AJ. Rapid Commun. Mass Spectrom.  1999,  13:  93 
  • 16 Santos ICMS. Balula MSS. Simões MMQ. Neves MGPMS. Cavaleiro JAS. Cavaleiro AMV. Synlett  2003,  1643 
  • 17 Simões MMQ. Santos ICMS. Balula MSS. Gamelas JAF. Cavaleiro AMV. Neves MGPMS. Cavaleiro JAS. Catal. Today  2004,  91-92:  211 
  • 18 Balula MSS. Santos ICMS. Simões MMQ. Neves MGPMS. Cavaleiro JAS. Cavaleiro AMV. J. Mol. Catal. A: Chem.  2004,  222:  159 
  • 19 Santos ICMS. Gamelas JAF. Balula MSS. Simões MMQ. Neves MGPMS. Cavaleiro JAS. Cavaleiro AMV. J. Mol. Catal. A: Chem.  2007,  262:  41 
  • 20 Chen JD. Dakka J. Sheldon RA. Appl. Catal., A  1994,  108:  L1 
  • 21 Hansen CB. Agterberg FPW. van Eijndhoven AMC. Drenth W. J. Mol. Catal. A: Chem.  1995,  102:  117 
  • 22 Camblor MA. Corma A. Pérez-Pariente J. Zeolites  1993,  13:  82 
  • 23 Weissermel K. Arpe HJ. Industrial Organic Chemistry   3rd ed.:  VCH; Weinheim: 1997.  p.191 
  • 24 About-Jaudet E. Barton DHR. Csuhai E. Ozbalik N. Tetrahedron Lett.  1990,  31:  1657 
  • 25 Reddy KM. Moudrakovski I. Sayari A. J. Chem. Soc., Chem. Commun.  1994,  1059 
  • 26 Selvam P. Paulose TAP. J. Nanosci. Nanotechnol.  2006,  6:  1758 
  • 27 Balula MS. Gamelas JA. Carapuça HM. Cavaleiro AMV. Schlindwein W. Eur. J. Inorg. Chem.  2004,  619 
  • 28 Gamelas JA. Couto FAS. Trovão MCN. Cavaleiro AMV. Cavaleiro JAS. Pedrosa de Jesus JD. Thermochim. Acta  1999,  326:  165 
  • 31 Jones CW. Applications of Hydrogen Peroxide and Derivatives   The Royal Society of Chemistry; Cambridge: 1999. 
  • 32 Pires EL. Wallau M. Schuchardt U. J. Mol. Catal. A: Chem.  1998,  136:  69 
  • 33 Kochi JK. J. Am. Chem. Soc.  1962,  84:  1193 
  • 34 Bacha JD. Kochi JK. J. Org. Chem.  1965,  30:  3272 
  • 35 Wilsey S. Dowd P. Houk KN. J. Org. Chem.  1999,  64:  8801 
29

The reactions were typically carried out by heating a solution of 1.0 mmol of the cycloalkane and 1.5 µmol of the catalyst in MeCN at 80 °C. The oxidant used was 30 wt% aq H2O2. Aliquots were withdrawn from the reaction mixture and injected directly into GC-MS (fused silica capillary column, DB-5, with 30 m × 0.25 mm i.d.; 0.25 µm film thickness). The percentages of each compound in the reaction mixture were estimated directly from the corresponding chromatographic peak areas.

30

The efficiency of usage of hydrogen peroxide is calculated according to the following formula: (amount of ketone × 2 + amount of alcohol + amount of alkyl hydroperoxide × 2 + amount of aldehyde)/(amount of H2O2 used). The unused H2O2 and the hydroperoxide produced were quantified by titration of aliquots with 0.1 M Ce(SO4)2 using ferroin as indicator. From the yields of the hydroperoxide, determined by GC-MS, the amount of H2O2 used can be determined.