Thromb Haemost 2018; 118(02): 251-265
DOI: 10.1160/TH17-08-0596
Review Article
Schattauer GmbH Stuttgart

Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis

E. Campello
,
M.W. Henderson
,
D.F. Noubouossie
,
P. Simioni
,
N.S. Key
Weitere Informationen

Publikationsverlauf

29. August 2017

23. November 2017

Publikationsdatum:
29. Januar 2018 (online)

Abstract

Cancer induces a systemic hypercoagulable state that elevates the baseline thrombotic risk of affected patients. This hypercoagulable state reflects a complex interplay between cancer cells and host cells and the coagulation system as part of the host response to cancer. Although the tissue factor (TF)/factor VIIa pathway is proposed to be the principal initiator of fibrin formation in cancer patients, clinical studies have not shown a consistent relationship between circulating TF levels (often measured as plasma microvesicle-associated TF) and the risk of thrombosis. A renewed interest in the role of the contact pathway in thrombosis has evolved over the past decade, raising the question of its role in the pathogenesis of thrombotic complications in cancer. Recent observations have documented the presence of activation of the contact system in gastrointestinal, lung, breast and prostate cancers. Although the assays used to measure contact activation differ, and despite the absence of standardization of methodologies, it is clear that both the intrinsic and extrinsic pathways may be activated in cancer. This review will focus on recent findings concerning the role of activation of the contact system in cancer-associated hypercoagulability and thrombosis. An improved understanding of the pathophysiology of these mechanisms may lead to personalized antithrombotic protocols with improved efficacy and safety compared with currently available therapies.

 
  • References

  • 1 Trousseau A. Phlegmasia alba dolens. Clin Med Hotel-dieu Paris 1865; 3: 654-712
  • 2 Varki A. Trousseau's syndrome: multiple definitions and multiple mechanisms. Blood 2007; 110 (06) 1723-1729
  • 3 Elyamany G, Alzahrani AM, Bukhary E. Cancer-associated thrombosis: an overview. Clin Med Insights Oncol 2014; 8: 129-137
  • 4 Khorana AA. Cancer-associated thrombosis: updates and controversies. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 626-630
  • 5 Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood 2013; 122 (10) 1712-1723
  • 6 Cohen AT, Katholing A, Rietbrock S, Bamber L, Martinez C. Epidemiology of first and recurrent venous thromboembolism in patients with active cancer. A population-based cohort study. Thromb Haemost 2017; 117 (01) 57-65
  • 7 Khorana AA, Ahrendt SA, Ryan CK. , et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13 (10) 2870-2875
  • 8 Wang JG, Geddings JE, Aleman MM. , et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119 (23) 5543-5552
  • 9 Toth B, Liebhardt S, Steinig K. , et al. Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb Haemost 2008; 100 (04) 663-669
  • 10 Thaler J, Ay C, Mackman N. , et al. Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients. J Thromb Haemost 2012; 10 (07) 1363-1370
  • 11 Hernández C, Orbe J, Roncal C. , et al. Tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patients. Thromb Haemost 2013; 110 (03) 598-608
  • 12 Maas C, Oschatz C, Renné T. The plasma contact system 2.0. Semin Thromb Hemost 2011; 37 (04) 375-381
  • 13 Schmaier AH. The contact activation and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (01) 28-39
  • 14 de Maat S, Maas C. Factor XII: form determines function. J Thromb Haemost 2016; 14 (08) 1498-1506
  • 15 Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14 (03) 427-437
  • 16 de Maat S, Tersteeg C, Herczenik E, Maas C. Tracking down contact activation - from coagulation in vitro to inflammation in vivo. Int J Lab Hematol 2014; 36 (03) 374-381
  • 17 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303
  • 18 Lin L, Wu M, Zhao J. The initiation and effects of plasma contact activation: an overview. Int J Hematol 2017; 105 (03) 235-243
  • 19 Schapira M. Major inhibitors of the contact phase coagulation factors. Semin Thromb Hemost 1987; 13 (01) 69-78
  • 20 Pixley RA, Schapira M, Colman RW. The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem 1985; 260 (03) 1723-1729
  • 21 Wuillemin WA, Minnema M, Meijers JC. , et al. Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes: major role for C1-inhibitor. Blood 1995; 85 (06) 1517-1526
  • 22 van der Graaf F, Koedam JA, Bouma BN. Inactivation of kallikrein in human plasma. J Clin Invest 1983; 71 (01) 149-158
  • 23 Schapira M, Scott CF, Colman RW. Contribution of plasma protease inhibitors to the inactivation of kallikrein in plasma. J Clin Invest 1982; 69 (02) 462-468
  • 24 Kaufman N, Page JD, Pixley RA, Schein R, Schmaier AH, Colman RW. Alpha 2-macroglobulin-kallikrein complexes detect contact system activation in hereditary angioedema and human sepsis. Blood 1991; 77 (12) 2660-2667
  • 25 Kishimoto TK, Viswanathan K, Ganguly T. , et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med 2008; 358 (23) 2457-2467
  • 26 Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 2012; 119 (25) 5972-5979
  • 27 Kornberg A, Rao NN, Ault-Riché D. Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 1999; 68: 89-125
  • 28 Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 2006; 103 (04) 903-908
  • 29 Smith SA, Choi SH, Davis-Harrison R. , et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 2010; 116 (20) 4353-4359
  • 30 Donovan AJ, Kalkowski J, Smith SA, Morrissey JH, Liu Y. Size-controlled synthesis of granular polyphosphate nanoparticles at physiologic salt concentrations for blood clotting. Biomacromolecules 2014; 15 (11) 3976-3984
  • 31 Verhoef JJ, Barendrecht AD, Nickel KF. , et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12) 1707-1717
  • 32 de Maat S, de Groot PG, Maas C. Contact system activation on endothelial cells. Semin Thromb Hemost 2014; 40 (08) 887-894
  • 33 Motta G, Rojkjaer R, Hasan AAK, Cines DB, Schmaier AH. High molecular weight kininogen regulates prekallikrein assembly and activation on endothelial cells: a novel mechanism for contact activation. Blood 1998; 91 (02) 516-528
  • 34 Joseph K, Tholanikunnel BG, Kaplan AP. Heat shock protein 90 catalyzes activation of the prekallikrein-kininogen complex in the absence of factor XII. Proc Natl Acad Sci U S A 2002; 99 (02) 896-900
  • 35 Shariat-Madar Z, Mahdi F, Schmaier AH. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 2002; 277 (20) 17962-17969
  • 36 Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 2012; 1823 (03) 730-741
  • 37 Tans G, Rosing J, Berrettini M, Lämmle B, Griffin JH. Autoactivation of human plasma prekallikrein. J Biol Chem 1987; 262 (23) 11308-11314
  • 38 Herwald H, Mörgelin M, Olsén A. , et al. Activation of the contact-phase system on bacterial surfaces–a clue to serious complications in infectious diseases. Nat Med 1998; 4 (03) 298-302
  • 39 Minnema MC, Pajkrt D, Wuillemin WA. , et al. Activation of clotting factor XI without detectable contact activation in experimental human endotoxemia. Blood 1998; 92 (09) 3294-3301
  • 40 Ramström S. Clotting time analysis of citrated blood samples is strongly affected by the tube used for blood sampling. Blood Coagul Fibrinolysis 2005; 16 (06) 447-452
  • 41 Boknäs N, Faxälv L, Lindahl TL, Ramström S. Contact activation: important to consider when measuring the contribution of tissue factor-bearing microparticles to thrombin generation using phospholipid-containing reagents. J Thromb Haemost 2014; 12 (04) 515-518
  • 42 Weng LC, Cushman M, Pankow JS. , et al. A genetic association study of activated partial thromboplastin time in European Americans and African Americans: the ARIC Study. Hum Mol Genet 2015; 24 (08) 2401-2408
  • 43 Battistelli S, Stefanoni M, Lorenzi B. , et al. Coagulation factor levels in non-metastatic colorectal cancer patients. Int J Biol Markers 2008; 23: 36-41
  • 44 Nickel KF, Ronquist G, Langer F. , et al. The polyphosphate-factor XII pathway drives coagulation in prostate cancer-associated thrombosis. Blood 2015; 126 (11) 1379-1389
  • 45 Røjkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH. Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 1998; 80 (01) 74-81
  • 46 Rao GJ, Posner LA, Nadler HL. Deficiency of kallikrein activity in plasma of patients with cystic fibrosis. Science 1972; 177 (4049): 610-611
  • 47 Nyborg JK, Peersen OB. That zincing feeling: the effects of EDTA on the behaviour of zinc-binding transcriptional regulators. Biochem J 2004; 381 (Pt 3): e3-e4
  • 48 Shibayama Y, Joseph K, Nakazawa Y, Ghebreihiwet B, Peerschke EI, Kaplan AP. Zinc-dependent activation of the plasma kinin-forming cascade by aggregated beta amyloid protein. Clin Immunol 1999; 90 (01) 89-99
  • 49 Roeise O, Sivertsen S, Ruud TE, Bouma BN, Stadaas JO, Aasen AO. Studies on components of the contact phase system in patients with advanced gastrointestinal cancer. Cancer 1990; 65 (06) 1355-1359
  • 50 Nuijens JH, Huijbregts CC, Cohen M. , et al. Detection of activation of the contact system of coagulation in vitro and in vivo: quantitation of activated Hageman factor-C-1-inhibitor and kallikrein-C-1-inhibitor complexes by specific radioimmunoassays. Thromb Haemost 1987; 58 (02) 778-785
  • 51 Konings J, Govers-Riemslag JW, Spronk HM, Waltenberger JL, ten Cate H. Activation of the contact system in patients with a first acute myocardial infarction. Thromb Res 2013; 132 (01) 138-142
  • 52 Wuillemin WA, Hack CE, Bleeker WK, Biemond BJ, Levi M, ten Cate H. Inactivation of factor Xia in vivo: studies in chimpanzees and in humans. Thromb Haemost 1996; 76 (04) 549-555
  • 53 Minnema MC, Wittekoek ME, Schoonenboom N, Kastelein JJ, Hack CE, ten Cate H. Activation of the contact system of coagulation does not contribute to the hemostatic imbalance in hypertriglyceridemia. Arterioscler Thromb Vasc Biol 1999; 19 (10) 2548-2553
  • 54 Siegerink B, Govers-Riemslag JW, Rosendaal FR, Ten Cate H, Algra A. Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study. Circulation 2010; 122 (18) 1854-1861
  • 55 Maas C, Govers-Riemslag JW, Bouma B. , et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118 (09) 3208-3218
  • 56 Lee SY, Niikura T, Iwakura T, Sakai Y, Kuroda R, Kurosaka M. Thrombin-antithrombin III complex tests. J Orthop Surg (Hong Kong) 2017; 25 (01) 170840616684501
  • 57 de Maat S, van Dooremalen S, de Groot PG, Maas C. A nanobody-based method for tracking factor XII activation in plasma. Thromb Haemost 2013; 110 (03) 458-468
  • 58 Hofman ZLM, de Maat S, Suffritti C. , et al. Cleaved kininogen as a biomarker for bradykinin release in hereditary angioedema. J Allergy Clin Immunol 2017; 140 (06) 1700-1703
  • 59 Joseph K, Tholanikunnel BG, Kaplan AP. Factor XII-independent cleavage of high-molecular-weight kininogen by prekallikrein and inhibition by C1 inhibitor. J Allergy Clin Immunol 2009; 124 (01) 143-149
  • 60 Madsen DE, Sidelmann JJ, Overgaard K, Koch C, Gram JB. ELISA for determination of total coagulation factor XII concentration in human plasma. J Immunol Methods 2013; 394 (1-2): 32-39
  • 61 Zini JM, Schmaier AH, Cines DB. Bradykinin regulates the expression of kininogen binding sites on endothelial cells. Blood 1993; 81 (11) 2936-2946
  • 62 Stadnicki A, Sartor RB, Janardham R. , et al. Kallikrein-kininogen system activation and bradykinin (B2) receptors in indomethacin induced enterocolitis in genetically susceptible Lewis rats. Gut 1998; 43 (03) 365-374
  • 63 Murphey LJ, Gainer JV, Vaughan DE, Brown NJ. Angiotensin-converting enzyme insertion/deletion polymorphism modulates the human in vivo metabolism of bradykinin. Circulation 2000; 102 (08) 829-832
  • 64 Murphey LJ, Hachey DL, Vaughan DE, Brown NJ, Morrow JD. Quantification of BK1-5, the stable bradykinin plasma metabolite in humans, by a highly accurate liquid-chromatographic tandem mass spectrometric assay. Anal Biochem 2001; 292 (01) 87-93
  • 65 Yu HS, Wang SW, Chang AC. , et al. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells. Biochem Pharmacol 2014; 87 (02) 243-253
  • 66 Cuddapah VA, Turner KL, Seifert S, Sontheimer H. Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3. J Neurosci 2013; 33 (04) 1427-1440
  • 67 Pan J, Qian Y, Weiser P. , et al. Glycosaminoglycans and activated contact system in cancer patient plasmas. Prog Mol Biol Transl Sci 2010; 93: 473-495
  • 68 Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol 2015; 8: 83
  • 69 Campello E, Spiezia L, Radu CM. , et al. Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism. Thromb Res 2011; 127 (05) 473-477
  • 70 Sartori MT, Della Puppa A, Ballin A. , et al. Circulating microparticles of glial origin and tissue factor bearing in high-grade glioma: a potential prothrombotic role. Thromb Haemost 2013; 110 (02) 378-385
  • 71 Zhao L, Bi Y, Kou J, Shi J, Piao D. Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. J Exp Clin Cancer Res 2016; 35: 54
  • 72 Lechner D, Weltermann A. Chemotherapy-induced thrombosis: a role for microparticles and tissue factor?. Semin Thromb Hemost 2008; 34 (02) 199-203
  • 73 Mezouar S, Mege D, Darbousset R. , et al. Involvement of platelet-derived microparticles in tumor progression and thrombosis. Semin Oncol 2014; 41 (03) 346-358
  • 74 Żmigrodzka M, Guzera M, Miśkiewicz A, Jagielski D, Winnicka A. The biology of extracellular vesicles with focus on platelet microparticles and their role in cancer development and progression. Tumour Biol 2016; 37 (11) 14391-14401
  • 75 Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013; 122 (11) 1873-1880
  • 76 Geddings JE, Hisada Y, Boulaftali Y. , et al. Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost 2016; 14 (01) 153-166
  • 77 Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renné T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost 2012; 10 (07) 1355-1362
  • 78 Rubin O, Delobel J, Prudent M. , et al. Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation. Transfusion 2013; 53 (08) 1744-1754
  • 79 Mooberry MJ, Bradford R, Hobl EL, Lin FC, Jilma B, Key NS. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. J Thromb Haemost 2016; 14 (05) 1031-1042
  • 80 Muhsin-Sharafaldine MR, Saunderson SC, Dunn AC, Faed JM, Kleffmann T, McLellan AD. Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget 2016; 7 (35) 56279-56294
  • 81 Leal AC, Mizurini DM, Gomes T. , et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep 2017; 7 (01) 6438
  • 82 Holdenrieder S, Stieber P, Förg T. , et al. Apoptosis in serum of patients with solid tumours. Anticancer Res 1999; 19 (4A): 2721-2724
  • 83 Yi Z, Liu B, Guan X, Ma F. Plasma cell-free DNA and survival in non-small-cell lung cancer: a meta-analysis. Mol Clin Oncol 2017; 7 (02) 167-172
  • 84 Spindler KG, Boysen AK, Pallisgård N. , et al. Cell-free DNA in metastatic colorectal cancer: a systematic review and meta-analysis. Oncologist 2017; 22 (09) 1049-1055
  • 85 Dicke C, Amirkhosravi A, Spath B. , et al. Tissue factor-dependent and -independent pathways of systemic coagulation activation in acute myeloid leukemia: a single-center cohort study. Exp Hematol Oncol 2015; 4: 22
  • 86 Jahr S, Hentze H, Englisch S. , et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (04) 1659-1665
  • 87 Gould TJ, Lysov Z, Liaw PC. Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost 2015; 13 (Suppl. 01) S82-S91
  • 88 Kwee S, Song MA, Cheng I, Loo L, Tiirikainen M. Measurement of circulating cell-free DNA in relation to 18F-fluorocholine PET/CT imaging in chemotherapy-treated advanced prostate cancer. Clin Transl Sci 2012; 5 (01) 65-70
  • 89 Lysov Z, Dwivedi DJ, Gould TJ, Liaw PC. Procoagulant effects of lung cancer chemotherapy: impact on microparticles and cell-free DNA. Blood Coagul Fibrinolysis 2017; 28 (01) 72-82
  • 90 Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 2009; 1 (03) 225-230
  • 91 Ivanov I, Shakhawat R, Sun MF. , et al. Nucleic acids as cofactors for factor XI and prekallikrein activation: different roles for high-molecular-weight kininogen. Thromb Haemost 2017; 117 (04) 671-681
  • 92 Noubouossie DF, Whelihan MF, Yu YB. , et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129 (08) 1021-1029
  • 93 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 94 Vu TT, Leslie BA, Stafford AR, Zhou J, Fredenburgh JC, Weitz JI. Histidine-rich glycoprotein binds DNA and RNA and attenuates their capacity to activate the intrinsic coagulation pathway. Thromb Haemost 2016; 115 (01) 89-98
  • 95 Swystun LL, Mukherjee S, Liaw PC. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011; 9 (11) 2313-2321
  • 96 Fuchs TA, Brill A, Duerschmied D. , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
  • 97 Semeraro F, Ammollo CT, Morrissey JH. , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (07) 1952-1961
  • 98 Semeraro F, Ammollo CT, Esmon NL, Esmon CT. Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells. J Thromb Haemost 2014; 12 (10) 1697-1702
  • 99 Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9 (09) 1795-1803
  • 100 Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer 2016; 16 (07) 431-446
  • 101 Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014; 40 (03) 277-283
  • 102 Thålin C, Demers M, Blomgren B. , et al. NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation. Thromb Res 2016; 139: 56-64
  • 103 Brill A, Fuchs TA, Savchenko AS. , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (01) 136-144
  • 104 McDonald B, Davis RP, Kim SJ. , et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 105 Massberg S, Grahl L, von Bruehl ML. , et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 2010; 16 (08) 887-896
  • 106 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 107 Gould TJ, Vu TT, Swystun LL. , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (09) 1977-1984
  • 108 Meikle CK, Kelly CA, Garg P, Wuescher LM, Ali RA, Worth RG. Cancer and thrombosis: the platelet perspective. Front Cell Dev Biol 2017; 4: 147
  • 109 Walsh PN, Griffin JH. Platelet-coagulant protein interactions in contact activation. Ann N Y Acad Sci 1981; 370: 241-252
  • 110 Müller F, Mutch NJ, Schenk WA. , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (06) 1143-1156
  • 111 Riedl J, Preusser M, Nazari PM. , et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 2017; 129 (13) 1831-1839
  • 112 Suzuki-Inoue K, Kato Y, Inoue O. , et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282 (36) 25993-26001
  • 113 Kuter DJ. Thrombotic complications of central venous catheters in cancer patients. Oncologist 2004; 9 (02) 207-216
  • 114 Verso M, Agnelli G. Venous thromboembolism associated with long-term use of central venous catheters in cancer patients. J Clin Oncol 2003; 21 (19) 3665-3675
  • 115 Rajasekhar A, Streiff MB. How I treat central venous access device-related upper extremity deep vein thrombosis. Blood 2017; 129 (20) 2727-2736
  • 116 Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it?. J Thromb Haemost 2015; 13 (Suppl. 01) S72-S81
  • 117 Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004; 25 (26) 5681-5703
  • 118 Yau JW, Stafford AR, Liao P, Fredenburgh JC, Roberts R, Weitz JI. Mechanism of catheter thrombosis: comparison of the antithrombotic activities of fondaparinux, enoxaparin, and heparin in vitro and in vivo. Blood 2011; 118 (25) 6667-6674
  • 119 Yau JW, Stafford AR, Liao P. , et al. Corn trypsin inhibitor coating attenuates the prothrombotic properties of catheters in vitro and in vivo. Acta Biomater 2012; 8 (11) 4092-4100
  • 120 Yau JW, Liao P, Fredenburgh JC. , et al. Selective depletion of factor XI or factor XII with antisense oligonucleotides attenuates catheter thrombosis in rabbits. Blood 2014; 123 (13) 2102-2107
  • 121 Farge D, Bounameaux H, Brenner B. , et al. International clinical practice guidelines including guidance for direct oral anticoagulants in the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol 2016; 17 (10) e452-e466
  • 122 Alibeik S, Zhu S, Yau JW, Weitz JI, Brash JL. Surface modification with polyethylene glycol-corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces. Acta Biomater 2011; 7 (12) 4177-4186
  • 123 Eikelboom JW, Connolly SJ, Brueckmann M. , et al; RE-ALIGN Investigators. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med 2013; 369 (13) 1206-1214
  • 124 Renné T, Pozgajová M, Grüner S. , et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202 (02) 271-281
  • 125 Nickel KF, Long AT, Fuchs TA, Butler LM, Renné T. Factor XII as a therapeutic target in Thromboembolic and inflammatory diseases. Arterioscler Thromb Vasc Biol 2017; 37 (01) 13-20
  • 126 Fredenburgh JC, Gross PL, Weitz JI. Emerging anticoagulant strategies. Blood 2017; 129 (02) 147-154
  • 127 Hansson KM, Nielsen S, Elg M, Deinum J. The effect of corn trypsin inhibitor and inhibiting antibodies for FXIa and FXIIa on coagulation of plasma and whole blood. J Thromb Haemost 2014; 12 (10) 1678-1686
  • 128 May F, Krupka J, Fries M. , et al. FXIIa inhibitor rHA-Infestin-4: Safe thromboprotection in experimental venous, arterial and foreign surface-induced thrombosis. Br J Haematol 2016; 173 (05) 769-778
  • 129 Xu Y, Cai TQ, Castriota G. , et al. Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb Haemost 2014; 111 (04) 694-704
  • 130 Kleinschnitz C, Stoll G, Bendszus M. , et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med 2006; 203 (03) 513-518
  • 131 Matafonov A, Leung PY, Gailani AE. , et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014; 123 (11) 1739-1746
  • 132 Larsson M, Rayzman V, Nolte MW. , et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 2014; 6 (222) 222ra17
  • 133 Björkqvist J, de Maat S, Lewandrowski U. , et al. Defective glycosylation of coagulation factor XII underlies hereditary angioedema type III. J Clin Invest 2015; 125 (08) 3132-3146
  • 134 Weitz JI, Fredenburgh JC. Factors XI and XII as targets for new anticoagulants. Front Med (Lausanne) 2017; 4: 19
  • 135 Wu W, Li H, Navaneetham D, Reichenbach ZW, Tuma RF, Walsh PN. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis. Blood 2012; 120 (03) 671-677
  • 136 Ma D, Mizurini DM, Assumpção TC. , et al. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 2013; 122 (25) 4094-4106
  • 137 Wong PC, Crain EJ, Watson CA, Schumacher WA. A small-molecule factor XIa inhibitor produces antithrombotic efficacy with minimal bleeding time prolongation in rabbits. J Thromb Thrombolysis 2011; 32 (02) 129-137
  • 138 Quan ML, Wong PC, Wang C. , et al. Tetrahydroquinoline derivatives as potent and selective factor XIa inhibitors. J Med Chem 2014; 57 (03) 955-969
  • 139 Hangeland JJ, Friends TJ, Rossi KA. , et al. Phenylimidazoles as potent and selective inhibitors of coagulation factor XIa with in vivo antithrombotic activity. J Med Chem 2014; 57 (23) 9915-9932
  • 140 Tucker EI, Marzec UM, White TC. , et al. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009; 113 (04) 936-944
  • 141 Tucker EI, Verbout NG, Leung PY. , et al. Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 2012; 119 (20) 4762-4768
  • 142 Cheng Q, Tucker EI, Pine MS. , et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010; 116 (19) 3981-3989
  • 143 Büller HR, Bethune C, Bhanot S. , et al; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372 (03) 232-240
  • 144 Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015; 13 (08) 1383-1395
  • 145 Woodruff RS, Xu Y, Layzer J, Wu W, Ogletree ML, Sullenger BA. Inhibiting the intrinsic pathway of coagulation with a factor XII-targeting RNA aptamer. J Thromb Haemost 2013; 11 (07) 1364-1373
  • 146 Travers RJ, Shenoi RA, Kalathottukaren MT, Kizhakkedathu JN, Morrissey JH. Nontoxic polyphosphate inhibitors reduce thrombosis while sparing hemostasis. Blood 2014; 124 (22) 3183-3190
  • 147 Bollen L, Peetermans M, Peeters M. , et al. Active PAI-1 as marker for venous thromboembolism: case-control study using a comprehensive panel of PAI-1 and TAFI assays. Thromb Res 2014; 134 (05) 1097-1102
  • 148 Fuchs HJ, Borowitz DS, Christiansen DH. , et al; The Pulmozyme Study Group. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 1994; 331 (10) 637-642