J Brachial Plex Peripher Nerve Inj 2011; 06(01): e23-e32
DOI: 10.1186/1749-7221-6-8
Research article
Ko et al; licensee BioMed Central Ltd.

A quantitative evaluation of gross versus histologic neuroma formation in a rabbit forelimb amputation model: potential implications for the operative treatment and study of neuromas[*]

Jason H Ko
1   Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
,
Peter S Kim
1   Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
,
Kristina D O’Shaughnessy
1   Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
,
Xianzhong Ding
2   Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
,
Todd A Kuiken
3   Neural Engineering Center for Artificial Limbs (NECAL), Rehabilitation Institute of Chicago, Chicago, IL, USA
,
Gregory A Dumanian
1   Department of Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
3   Neural Engineering Center for Artificial Limbs (NECAL), Rehabilitation Institute of Chicago, Chicago, IL, USA
› Institutsangaben

Verantwortlicher Herausgeber dieser Rubrik:
Weitere Informationen

Publikationsverlauf

28. September 2010

13. Oktober 2011

Publikationsdatum:
23. September 2014 (online)

Abstract

Background Surgical treatment of neuromas involves excision of neuromas proximally to the level of grossly “normal” fascicles; however, proximal changes at the axonal level may have both functional and therapeutic implications with regard to amputated nerves. In order to better understand the retrograde “zone of injury” that occurs after nerve transection, we investigated the gross and histologic changes in transected nerves using a rabbit forelimb amputation model.

Methods Four New Zealand White rabbits underwent a forelimb amputation with transection and preservation of the median, radial, and ulnar nerves. After 8 weeks, serial sections of the amputated nerves were then obtained in a distal-to-proximal direction toward the brachial plexus. Quantitative histomorphometric analysis was performed on all nerve specimens.

Results All nerves demonstrated statistically significant increases in nerve cross-sectional area between treatment and control limbs at the distal nerve end, but these differences were not observed 10 mm more proximal to the neuroma bulb. At the axonal level, an increased number of myelinated fibers were seen at the distal end of all amputated nerves. The number of myelinated fibers progressively decreased in proximal sections, normalizing at 15 mm proximally, or the level of the brachial plexus. The cross-sectional area of myelinated fibers was significantly decreased in all sections of the treatment nerves, indicating that atrophic axonal changes proceed proximally at least to the level of the brachial plexus.

Conclusions Morphologic changes at the axonal level extend beyond the region of gross neuroma formation in a distal-to-proximal fashion after nerve transection. This discrepancy between gross and histologic neuromas signifies the need for improved standardization among neuroma models, while also providing a fresh perspective on how we should view neuromas during peripheral nerve surgery.

*This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


 
  • References

  • 1 Waller A. Experiments on the sections of glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibers. Phil Trans R Soc Lond 1850; 140: 423-429 10.1098/rstl.1850.0021
  • 2 Ramon y Cajal S. Mechanismo de la degeneration y regeneration de nervos. Trab Lab Inbest Biol 1905; 9: 119
  • 3 Ann ES, Mizoguchi A, Okajima S et al: Motor axon terminal regeneration as studied by protein gene product 9.5 immunohistochemistry in the rat. Arch Histol Cytol 1994; 57 (4) 317-330 10.1679/aohc.57.317 7880586
  • 4 Mackinnon SE. Neuromas. Foot Ankle Clin 1998; 3: 385-404
  • 5 Cravioto H, Battista A. Clinical and ultrastructural study of painful neuroma. Neurosurgery 1981; 8 (2) 181-190 10.1227/00006123-198102000-00007 7207783
  • 6 Mackinnon SE, Dellon AL, Hudson AR et al: Alteration of neuroma formation by manipulation of its microenvironment. Plast Reconstr Surg 1985; 76 (3) 345-353 10.1097/00006534-198509000-00001 4034753
  • 7 Meyer RA, Raja SN, Campbell JN et al: Neural activity originating from a neuroma in the baboon. Brain Res 1985; 325 (1-2) 255-260 10.1016/0006-8993(85)90321-X 2983828
  • 8 Mass DP, Ciano MC, Tortosa R et al: Treatment of painful hand neuromas by their transfer into bone. Plast Reconstr Surg 1984; 74 (2) 182-185 10.1097/00006534-198408000-00002 6463143
  • 9 Iadarola MJ, Max MB, Berman KF et al: Unilateral decrease in thalamic activity observed with positron emission tomography in patients with chronic neuropathic pain. Pain 1995; 63 (1) 55-64 10.1016/0304-3959(95)00015-K 8577491
  • 10 Battista AF, Cravioto HM, Budzilovich GN. Painful neuroma: changes produced in peripheral nerve after fascicle ligation. Neurosurgery 1981; 9 (5) 589-600 10.1227/00006123-198111000-00019 7322324
  • 11 Gonzalez-Darder J, Barbera J, Alamo J et al: Fascicular ligation in the prevention and treatment of painful terminal neuroma: an experimental study in the rat. Neurosurgery 1987; 21 (2) 215-217 10.1227/00006123-198708000-00014 3658133
  • 12 Muehleman C, Rahimi F. Effectiveness of an epineurial barrier in reducing axonal regeneration and neuroma formation in the rat. J Foot Surg 1990; 29 (3) 260-264 2199556
  • 13 Robbins TH. Nerve capping in the treatment of troublesome terminal neuromata. Br J Plast Surg 1986; 39 (2) 239-240 10.1016/0007-1226(86)90089-5 3697566
  • 14 Sakai Y, Ochi M, Uchio Y et al: Prevention and treatment of amputation neuroma by an atelocollagen tube in rat sciatic nerves. J Biomed Mater Res B Appl Biomater 2005; 73 (2) 355-360 15793830
  • 15 Swanson AB, Boeve NR, Lumsden RM. The prevention and treatment of amputation neuromata by silicone capping. J Hand Surg Am 1977; 2 (1) 70-78 839057
  • 16 Gonzalez-Darder J, Barbera J, Abellan MJ et al: Centrocentral anastomosis in the prevention and treatment of painful terminal neuroma. An experimental study in the rat. J Neurosurg 1985; 63 (5) 754-758 10.3171/jns.1985.63.5.0754 4056878
  • 17 Ashley L, Stallings JO. End-to-side nerve flap for treatment of painful neuroma: a 15-year follow-up. J Am Osteopath Assoc 1988; 88 (5) 621-624 3417483
  • 18 Barbera J, bert-Pamplo R. Centrocentral anastomosis of the proximal nerve stump in the treatment of painful amputation neuromas of major nerves. J Neurosurg 1993; 79 (3) 331-334 10.3171/jns.1993.79.3.0331 8360727
  • 19 Boldney E. Amputation neuromas in nerves implanted into bone. Ann Surg 2009; 118: 1052-1057
  • 20 Tupper JW, Booth DM. Treatment of painful neuromas of sensory nerves in the hand: a comparison of traditional and newer methods. J Hand Surg Am 1976; 1 (2) 144-151 1032972
  • 21 Burchiel KJ, Johans TJ, Ochoa J. The surgical treatment of painful traumatic neuromas. J Neurosurg 1993; 78 (5) 714-719 10.3171/jns.1993.78.5.0714 8468601
  • 22 Dellon AL, Mackinnon SE, Pestronk A. Implantation of sensory nerve into muscle: preliminary clinical and experimental observations on neuroma formation. Ann Plast Surg 1984; 12 (1) 30-40 10.1097/00000637-198401000-00006 6703605
  • 23 Dellon AL, Mackinnon SE. Treatment of the painful neuroma by neuroma resection and muscle implantation. Plast Reconstr Surg 1986; 77 (3) 427-438 10.1097/00006534-198603000-00016 2937074
  • 24 Herndon JH, Eaton RG, Littler JW. Management of painful neuromas in the hand. J Bone Joint Surg Am 1976; 58 (3) 369-373 1262369
  • 25 Balcin H, Erba P, Wettstein R et al: A comparative study of two methods of surgical treatment for painful neuroma. J Bone Joint Surg Br 2009; 91 (6) 803-808 10.1302/0301-620X.91B6.22145 19483236
  • 26 Herbert TJ, Filan SL. Vein implantation for treatment of painful cutaneous neuromas. A preliminary report. J Hand Surg Br 1998; 23 (2) 220-224 10.1016/S0266-7681(98)80178-2 9607663
  • 27 Mobbs RJ, Vonau M, Blum P. Treatment of painful peripheral neuroma by vein implantation. J Clin Neurosci 2003; 10 (3) 338-339 10.1016/S0967-5868(03)00010-9 12763341
  • 28 Kakinoki R, Ikeguchi R, Matsumoto T et al: Treatment of painful peripheral neuromas by vein implantation. Int Orthop 2003; 27 (1) 60-64 12582812
  • 29 Kuiken TA, Dumanian GA, Lipschutz RD et al: The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 2004; 28 (3) 245-253 15658637
  • 30 Hijjawi JB, Kuiken TA, Lipschutz RD et al: Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg 2006; 118 (7) 1573-1578 10.1097/01.prs.0000242487.62487.fb 17102730
  • 31 Kuiken TA, Miller LA, Lipschutz RD et al: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 2007; 369 (9559) 371-380 10.1016/S0140-6736(07)60193-7 17276777
  • 32 O’Shaughnessy KD, Dumanian GA, Lipschutz RD et al: Targeted reinnervation to improve prosthesis control in transhumeral amputees. A report of three cases. J Bone Joint Surg Am 2008; 90 (2) 393-400 10.2106/JBJS.G.00268 18245601
  • 33 Dumanian GA, Ko JH, O’Shaughnessy KD et al: Targeted reinnervation for transhumeral amputees: current surgical technique and update on results. Plast Reconstr Surg 2009; 124 (3) 863-869 10.1097/PRS.0b013e3181b038c9 19730305
  • 34 Kuiken TA, Li G, Lock BA et al: Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 2009; 301 (6) 619-628 10.1001/jama.2009.116 3036162 19211469
  • 35 Kim PS, Ko J, O’Shaughnessy KK et al: Novel model for end-neuroma formation in the amputated rabbit forelimb. J Brachial Plex Peripher Nerve Inj 2010; 5: 6 10.1186/1749-7221-5-6 2848653 20298580
  • 36 CRAGG BG, THOMAS PK. Changes in conduction velocity and fibre size proximal to peripheral nerve lesions. J Physiol 1961; 157: 315-327 1359954 13696176
  • 37 Dyck PJ, Lais A, Karnes J et al: Peripheral axotomy induces neurofilament decrease, atrophy, demyelination and degeneration of root and fasciculus gracilis fibers. Brain Res 1985; 340 (1) 19-36 10.1016/0006-8993(85)90771-1 4040789
  • 38 Dyck PJ, Lais AC, Karnes JL et al: Permanent axotomy, a model of axonal atrophy and secondary segmental demyelination and remyelination. Ann Neurol 1981; 9 (6) 575-583 10.1002/ana.410090611 7259120
  • 39 Gillespie MJ, Stein RB. The relationship between axon diameter, myelin thickness and conduction velocity during atrophy of mammalian peripheral nerves. Brain Res 1983; 259 (1) 41-56 10.1016/0006-8993(83)91065-X 6824935
  • 40 Gordon T, Gillespie J, Orozco R et al: Axotomy-induced changes in rabbit hindlimb nerves and the effects of chronic electrical stimulation. J Neurosci 1991; 11 (7) 2157-2169 2066780
  • 41 Gutmann E, Sanders FK. Recovery of fibre numbers and diameters in the regeneration of peripheral nerves. J Physiol 1943; 101 (4) 489-518 1393482 16991581
  • 42 Kreutzberg GW, Schubert P. Volume changes in the axon during regeneration. Acta Neuropathol 1971; 17 (3) 220-226 10.1007/BF00685055 5552039
  • 43 Hunter DA, Moradzadeh A, Whitlock EL et al: Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve. J Neurosci Methods 2007; 166 (1) 116-124 10.1016/j.jneumeth.2007.06.018 2587177 17675163
  • 44 da Silva AP, Jordao CE, Fazan VP. Peripheral nerve morphometry: Comparison between manual and semi-automated methods in the analysis of a small nerve. J Neurosci Methods 2007; 159 (1) 153-157 10.1016/j.jneumeth.2006.06.012 16887196
  • 45 Lieberman AR. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 1971; 14: 49-124 4948651
  • 46 Torvik A. Central chromatolysis and the axon reaction: a reappraisal. Neuropathol Appl Neurobiol 1976; 2: 423-432 10.1111/j.1365-2990.1976.tb00516.x
  • 47 Ranson SW. Retrograde degeneration in the spinal nerves. J Comp Neurol 1906; 16: 265-293 10.1002/cne.920160403
  • 48 Sunderland S. Nerve and nerve injuries. Churchill Livingstone; London: 1972
  • 49 Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 1997; 14 (1-2) 67-116 10.1007/BF02740621 9170101
  • 50 Kuno M. Target dependence of motoneuronal survival: the current status. Neurosci Res 1990; 9 (3) 155-172 10.1016/0168-0102(90)90001-U 1963675
  • 51 Dyck PJ, Nukada H, Lais AC et al: Permanent axotomy: a model of chronic neuronal degeneration preceded by axonal atrophy, myelin remodeling, and degeneration. In: Dyck PJ, THOMAS PK, Lambert EH. et al. Peripheral Neuropathy. W.B. Saunders; Philadelphia: 1984: 760-870
  • 52 Ma J, Novikov LN, Wiberg M et al: Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res 2001; 139 (2) 216-223 10.1007/s002210100769 11497064
  • 53 Aitken JT, Sharman M, Young JZ. Maturation of regenerating nerve fibres with various peripheral connexions. J Anat 1947; 81 (Pt 1) 1-22 1272874 17105025
  • 54 Scadding JW. Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol 1981; 73 (2) 345-364 10.1016/0014-4886(81)90271-5 7262242
  • 55 Aitken JT. The effect of peripheral connexions on the maturation of regenerating nerve fibres. J Anat 1949; 83 (Pt. 1) 32-43 18111942
  • 56 Scadding JW, THOMAS PK. Retrograde growth of myelinated fibres in experimental neuromas. J Anat 1983; 136 (Pt 4) 793-799 1171961 6885628
  • 57 Amir R, Devor M. Ongoing activity in neuroma afferents bearing retrograde sprouts. Brain Res 1993; 630 (1-2) 283-288 10.1016/0006-8993(93)90667-C 8118694
  • 58 Burchiel KJ. Effects of electrical and mechanical stimulation on two foci of spontaneous activity which develop in primary afferent neurons after peripheral axotomy. Pain 1984; 18 (3) 249-265 10.1016/0304-3959(84)90820-0 6728494
  • 59 Govrin-Lippmann R, Devor M. Ongoing activity in severed nerves: source and variation with time. Brain Res 1978; 159 (2) 406-410 10.1016/0006-8993(78)90548-6 215270
  • 60 Wall PD, Devor M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain 1983; 17 (4) 321-339 10.1016/0304-3959(83)90164-1 6664680
  • 61 Wall PD, Gutnick M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp Neurol 1974; 43 (3) 580-593 10.1016/0014-4886(74)90197-6 4827166
  • 62 Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992; 355 (6355) 75-78 10.1038/355075a0 1370574
  • 63 Woolf CJ, Shortland P, Reynolds M et al: Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol 1995; 360 (1) 121-134 10.1002/cne.903600109 7499558
  • 64 Mannion RJ, Doubell TP, Coggeshall RE et al: Collateral sprouting of uninjured primary afferent A-fibers into the superficial dorsal horn of the adult rat spinal cord after topical capsaicin treatment to the sciatic nerve. J Neurosci 1996; 16 (16) 5189-5195 8756447
  • 65 Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science 2000; 288 (5472) 1765-1769 10.1126/science.288.5472.1765 10846153
  • 66 Ji RR, Kohno T, Moore KA et al: Central sensitization and LTP: do pain and memory share similar mechanisms?. Trends Neurosci 2003; 26 (12) 696-705 10.1016/j.tins.2003.09.017 14624855
  • 67 Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 1989; 37 (1) 111-123 10.1016/0304-3959(89)90160-7 2542867
  • 68 Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 1994; 72 (1) 169-179 7965003
  • 69 Torsney C, MacDermott AB. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J Neurosci 2006; 26 (6) 1833-1843 10.1523/JNEUROSCI.4584-05.2006 16467532
  • 70 Ramachandran VS, Rogers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 1996; 263 (1369) 377-386 10.1098/rspb.1996.0058 8637922
  • 71 Chan BL, Witt R, Charrow AP et al: Mirror therapy for phantom limb pain. N Engl J Med 2007; 357 (21) 2206-2207 10.1056/NEJMc071927 18032777
  • 72 Ramachandran VS, Rogers-Ramachandran D. Sensations referred to a patient’s phantom arm from another subjects intact arm: perceptual correlates of mirror neurons. Med Hypotheses 2008; 70 (6) 1233-1234 10.1016/j.mehy.2008.01.008 18329821
  • 73 Song C, Zhang F, Zhang J et al: Neuroma-in-continuity model in rabbits. Ann Plast Surg 2006; 57 (3) 317-322 10.1097/01.sap.0000221512.06129.d3 16929202
  • 74 Elwakil TF, Elkharbotly A. Role of Nd:YAG laser for prevention of neuroma formation: an in vivo experimental study. Lasers Med Sci 2008; 23 (2) 163-168 10.1007/s10103-007-0461-y 17497192