Yearb Med Inform 2017; 26(01): 178-187
DOI: 10.15265/IY-2017-017
Section 8: Bioinformatics and Translational Informatics
Survey
Georg Thieme Verlag KG Stuttgart

A Review of Recent Advances in Translational Bioinformatics: Bridges from Biology to Medicine

J. Vamathevan
1   European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
,
E. Birney
1   European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
› Institutsangaben
Weitere Informationen

Publikationsverlauf

18. August 2017

Publikationsdatum:
11. September 2017 (online)

Summary

Objectives: To highlight and provide insights into key developments in translational bioinformatics between 2014 and 2016.

Methods: This review describes some of the most influential bioinformatics papers and resources that have been published between 2014 and 2016 as well as the national genome sequencing initiatives that utilize these resources to routinely embed genomic medicine into healthcare. Also discussed are some applications of the secondary use of patient data followed by a comprehensive view of the open challenges and emergent technologies.

Results: Although data generation can be performed routinely, analyses and data integration methods still require active research and standardization to improve streamlining of clinical interpretation. The secondary use of patient data has resulted in the development of novel algorithms and has enabled a refined understanding of cellular and phenotypic mechanisms. New data storage and data sharing approaches are required to enable diverse biomedical communities to contribute to genomic discovery.

Conclusion: The translation of genomics data into actionable knowledge for use in healthcare is transforming the clinical landscape in an unprecedented way. Exciting and innovative models that bridge the gap between clinical and academic research are set to open up the field of translational bioinformatics for rapid growth in a digital era.

 
  • References

  • 1 van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30 (09) 418-26.
  • 2 Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016; 17 (06) 333-51.
  • 3 Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 2001; 40 (04) 346-58.
  • 4 Altman RB. Towards Clinical Bioinformatics: Redux 2015. Yearb Med Inform 2016; (Suppl. 01) S6-S7.
  • 5 Denny JC. Surveying Recent Themes in Translational Bioinformatics: Big Data in EHRs, Omics for Drugs, and Personal Genomics. Yearb Med Inform 2014; 199-205.
  • 6 Tenenbaum JD. Translational Bioinformatics: Past, Present, and Future. Genomics Proteomics Bioinformatics 2016; 14 (01) 31-41.
  • 7 Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245 (4922): 1066-73.
  • 8 Brodlie M, Haq IJ, Roberts K, Elborn JS. Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med 2015; 07 (01) 101.
  • 9 Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M. et al. Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. New Engl J Med 2015; 373 (03) 220-31.
  • 10 Telenti A, Pierce LCT, Biggs WH, di Iulio J, Wong EHM, Fabani MM. et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci 2016; 113 (42) 11901-6.
  • 11 Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V. et al. Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 2015; Sep 29; 07: 99.
  • 12 Cao MD, Ganesamoorthy D, Elliott AG, Zhang H, Cooper MA, Coin LJM. Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinIONTM sequencing. Gigascience 2016; 05 (01) 32.
  • 13 Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics 2015; 13 (05) 278-89.
  • 14 genome AieoDeith. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489 (7414): 57-74.
  • 15 The Genomes Project C. A global reference for human genetic variation. Nature 2015; 526 ((7571): 68-74.
  • 16 Stunnenberg HG, Abrignani S, Adams D, de Almeida M, Altucci L, Amin V. et al. The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 2016; 167 (05) 1145-9.
  • 17 Church DM, Schneider VA, Steinberg KM, Schatz MC, Quinlan AR, Chin C-S. et al. Extending reference assembly models. Genome Biol 2015; 16 (01) 13.
  • 18 Wright CF, Middleton A, Burton H, Cunningham F, Humphries SE, Hurst J. et al. Policy challenges of clinical genome sequencing. BMJ 2013; 347.
  • 19 Cook CE, Cook CE, Bergman MT, Finn RD, Cochrane G, Birney E. et al. The European Bioinformatics Institute in 2016: Data growth and integration. Nucleic Acids Res 2016; 44 (D1): D20-6.
  • 20 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A. et al. The Ensembl Variant Effect Predictor. Genome Biol 2016; 17 (01) 122.
  • 21 Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res 2017; 45 (D1): D865-D76.
  • 22 Bowdin S, Gilbert A, Bedoukian E, Carew C, Adam MP, Belmont J. et al. Recommendations for the integration of genomics into clinical practice. Genet Med 2016; 18 (11) 1075-84.
  • 23 Nguyen L, Bellucci E, Nguyen LT. Electronic health records implementation: An evaluation of information system impact and contingency factors. Int J Med Inform 2014; 83 (11) 779-96.
  • 24 Evans DGR, Barwell J, Eccles DM, Collins A, Izatt L, Jacobs C. et al. The Angelina Jolie effect: how high celebrity profile can have a major impact on provision of cancer related services. Breast Cancer Res 2014; 16 (05) 442.
  • 25 Wallace AJ. New challenges for BRCA testing: a view from the diagnostic laboratory. Eur J Hum Genet 2016; 24 (S1): S10-S8.
  • 26 George A, Riddell D, Seal S, Talukdar S, Mahamdallie S, Ruark E. et al. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients. Sci Rep 2016; 06: 29506.
  • 27 Health TGAfGa. A federated ecosystem for sharing genomic, clinical data. Science 2016; 352 (6291): 1278-80.
  • 28 Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg M. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 2015; 385 (9975): 1305-14.
  • 29 Study DDD. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015; 519 (7542): 223-8.
  • 30 Aronson SJ, Rehm HL. Building the foundation for genomics in precision medicine. Nature 2015; 526 (7573): 336-42.
  • 31 Brown SA, Jouni H, Marroush TS, Kullo IJ. Disclosing Genetic Risk for Coronary Heart Disease: Attitudes Toward Personal Information in Health Records. Am J Prev Med 2017; Apr; 52 (04) 499-506.
  • 32 Cutting E, Banchero M, Beitelshees AL, Cimino JJ, Fiol GD, Gurses AP. et al. User-centered design of multi-gene sequencing panel reports for clinicians. J Biomed Inform 2016; 63: 1-10.
  • 33 Iyengar R, Altman RB, Troyanskya O, FitzGerald GA. Personalization in practice. Science 2015; 350 (6258): 282-3.
  • 34 de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 2014; 346 (6206): 251-6.
  • 35 Folkersen L, Brynedal B, Diaz-Gallo LM, Ramskold D, Shchetynsky K, Westerlind H. et al. Integration of known DNA, RNA and protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis: results from the COMBINE study. Mol Med 2016; 22.
  • 36 Tirode F, Surdez D, Ma X, Parker M, Le Deley MC, Bahrami A. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov 2014; 04 (11) 1342-53.
  • 37 International Cancer Genome Consortium Ped-Brain Tumor P. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016; 22 (11) 1314-20.
  • 38 Kirby MK, Ramaker RC, Gertz J, Davis NS, Johnston BE, Oliver PG. et al. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Mol Oncol 2016; 10 (08) 1169-82.
  • 39 Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotech 2014; 32 (01) 40-51.
  • 40 Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM. et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 2015; 14 (07) 475-86.
  • 41 Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y. et al. The support of human genetic evidence for approved drug indications. Nat Genet 2015; 47 (08) 856-60.
  • 42 Bagley SC, Sirota M, Chen R, Butte AJ, Altman RB. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants. PLoS Comput Biol 2016; 12 (04) e1004885.
  • 43 Barrett JC, Dunham I, Birney E. Using human genetics to make new medicines. Nat Rev Genet 2015; 16 (10) 561-2.
  • 44 Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R. et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res 2017; Jan 4; 45 (D1): D985-D994.
  • 45 Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther 2016; 99 (03) 285-97.
  • 46 Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L. et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 2016; 17 (01) 53.
  • 47 Consortium IHGS. Initial sequencing and analysis of the human genome. Nature 2001; 409 (6822): 860-921.
  • 48 Tokheim CJ, Papadopoulos N, Kinzler KW, Vogelstein B, Karchin R. Evaluating the evaluation of cancer driver genes. Proc Natl Acad Sci 2016; 113 (50) 14330-5.
  • 49 Bagley SC, Altman RB. Computing disease incidence, prevalence and comorbidity from electronic medical records. J Biomed Inform 2016; 63: 108-11.
  • 50 Overby CL, Kohane I, Kannry JL, Williams MS, Starren J, Bottinger E. et al. Opportunities for genomic clinical decision support interventions. Genet Med 2013; 15 (10) 817-23.
  • 51 Health GAfGa. A federated ecosystem for sharing genomic, clinical data. Science 2016; 352 (6291): 1278-80.
  • 52 Bahr A, Schlünder I. Code of practice on secondary use of medical data in European scientific research projects1. International Data Privacy Law 2015; 05 (04) 279-91.
  • 53 Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT. Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Brief Bioinform 2016; Jan; 17 (01) 43-50.
  • 54 Greene AC, Giffin KA, Greene CS, Moore JH. Adapting bioinformatics curricula for big data. Brief Bioinform 2016; 17 (01) 43-50.
  • 55 Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269 (5223): 496-512.