Subscribe to RSS
DOI: 10.1590/0004-282X-ANP-2021-0202
Possible roles of sestrin2 in multiple sclerosis and its relationships with clinical outcomes
Possíveis papéis da sestrina2 na esclerose múltipla e suas relações com resultados clínicosABSTRACT
Background: Characterized by demyelination, inflammation and axonal damage, multiple sclerosis (MS) is one of the most common disorders of central nervous system led by the immune system. There is an urgent and obvious need for biomarkers for the diagnosis and follow-up of MS. Objective: To investigate serum levels of sestrin2 (SESN2), a protein that responds to acute stress, in MS patients. Methods: A total of 85 participants, 40 patients diagnosed previously with relapsing-remitting MS and 45 healthy controls, were included. Serum SESN2 parameters were investigated in blood samples drawn from each participant in the patient and control groups. Results: SESN2 levels were significantly lower in MS patients than in controls (z: -3.06; p=0.002). In the ROC analysis of SESN2, the predictive level for MS was 2.36 ng/mL [sensitivity, 72.50%; specificity, 55.56%; p=0.002; area under the curve (AUC)=0.693]. For the cut-off value in both groups, SESN2 was an independent predictor for MS [Exp (B)=3.977, 95% confidence interval (95%CI) 1.507-10.494 and p=0.013]. Conclusions: The decreased expression of SESN2 may play a role in MS pathogenesis, and SESN2 could be used as a biomarker for MS and as immunotherapeutic agent to treat MS.
RESUMO
Antecedentes: Caracterizada por desmielinização, inflamação e dano axonal, a esclerose múltipla (EM) é uma das doenças mais comuns do sistema nervoso central liderada pelo sistema imunológico. Há uma necessidade urgente e óbvia de biomarcadores para o diagnóstico e acompanhamento da EM. Objetivo: Investigar os níveis séricos de sestrina2 (SESN2), uma proteína que responde ao estresse agudo, em pacientes com EM. Métodos: Foram incluídos 85 participantes, 40 pacientes com diagnóstico prévio de EM recorrente-remitente e 45 controles saudáveis. Os parâmetros do SESN2 sérico foram investigados em amostras de sangue coletadas de cada participante nos grupos de paciente e controle. Resultados: os níveis de SESN2 foram significativamente mais baixos em pacientes com EM do que em controles (z: -3,06; p=0,002). Na análise ROC do SESN2, o nível preditivo para MS foi 2,36 ng/mL [sensibilidade, 72,50%; especificidade, 55,56%; p=0,002; área sob a curva (AUC)=0,693]. Para o valor de corte em ambos os grupos, SESN2 foi um preditor independente para MS [Exp (B)=3,977, intervalo de confiança de 95% (95%CI) 1,507-10,494; p=0,013]. Conclusões: A expressão diminuída de SESN2 pode desempenhar um papel na patogênese da EM, e SESN2 poderia ser usado como um biomarcador para EM e como agente imunoterapêutico para o tratamento de EM.
Palavras-chave:
Esclerose Múltipla - Sestrinas - Apoptose - Biomarcadores - Inflamação - Estresse OxidativoAuthors’ contributions:
FOO: developed the study idea, collected the data, participated in the statistical calculations and wrote the manuscript; TA, AUU: collected the data, participated in the statistical calculations and approved the final manuscript; TA, FD: participated in the statistical calculations, was involved in literature search and wrote the manuscript; MA, OST: developed the study idea, made and evaluated Doppler ultrasounds and participated in the statistical calculations; TA, AUU: participated in the statistical calculations, analyzed the data and approved the final manuscript; FOO, TA, AUU,: developed the study idea, analyzed the data and approved the final manuscript.
Publication History
Received: 27 May 2021
Accepted: 29 June 2021
Article published online:
06 February 2023
© 2022. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med 2018; Jan; 378 (02) 169-180 https://doi.org/10.1056/NEJMra1401483
- 2 Milo R, Korczyn AD, Manouchehri N, Stüve O. The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult Scler 2020; Jul; 26 (08) 876-886 https://doi.org/10.1177/1352458519886943
- 3 Compston A. The pathogenesis and basis for treatment in multiple sclerosis. Clin Neurol Neurosurg 2004; Jun; 106 (03) 246-248 https://doi.org/10.1016/j.clineuro.2004.02.007
- 4 Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmunol 2007; Mar;184(1-2) 37-44 https://doi.org/10.1016/j.jneuroim.2006.11.015
- 5 Oh J, Sicotte NL. New imaging approaches for precision diagnosis and disease staging of MS?. Mult Scler 2020; Jun; 26 (05) 568-575 https://doi.org/10.1177/1352458519871817
- 6 Kaisey M, Solomon AJ, Luu M, Giesser BS, Sicotte NL. Incidence of multiple sclerosis misdiagnosis in referrals to two academic centers. Mult Scler Relat Disord 2019; May; 30: 51-56 https://doi.org/10.1016/j.msard.2019.01.048
- 7 Pasha M, Eid AH, Eid AA, Gorin Y, Munusamy S. Sestrin2 as a novel biomarker and therapeutic target for various diseases. Oxid Med Cell Longev. 2017 Jun; 2017:3296294 https://doi.org/10.1155/2017/3296294
- 8 Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 2013; Dec; 18 (06) 792-801 https://doi.org/10.1016/j.cmet.2013.08.018
- 9 Li L, Xiao L, Hou Y, He Q, Zhu J, Li Y. et al. Sestrin2 silencing exacerbates cerebral ischemia/reperfusion injury by decreasing mitochondrial biogenesis through the AMPK/PGC-1α Pathway in Rats. Sci Rep 2016; Jul; 6: 30272-30272 https://doi.org/10.1038/srep30272
- 10 Shi X, Xu L, Doycheva DM, Tang J, Yan M, Zhang JH. Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J Cereb Blood Flow Metab 2017; Apr; 37 (04) 1447-1460 https://doi.org/10.1177/0271678X16656201
- 11 Chen SD, Yang JL, Lin TK, Yang DI. Emerging roles of sestrins in neurodegenerative diseases: counteracting oxidative stress and beyond. J Clin Med 2019; Jul;09 8 (07) 1001-1001 https://doi.org/10.3390/jcm8071001
- 12 Wang LX, Zhu XM, Yao YM. Sestrin2: its potential role and regulatory mechanism in host immune response in diseases. Front Immunol 2019; Dec; 10: 2797-2797 https://doi.org/10.3389/fimmu.2019.02797
- 13 Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 2011; Sep; 15 (06) 1679-1690 https://doi.org/10.1089/ars.2010.3530
- 14 Budanov AV, Shoshani T, Faerman A, Zelin E, Kamer I, Kalinski H. et al. Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 2002; Sep; 21 (39) 6017-6031 https://doi.org/10.1038/sj.onc.1205877
- 15 Seo K, Seo S, Ki SH, Shin SM. Sestrin2 inhibits hypoxia-inducible factor-1alpha accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radic Biol Med 2016; Dec; 101: 511-523 https://doi.org/10.1016/j.freeradbiomed.2016.11.014
- 16 Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004; Apr;304(5670) 596-600 https://doi.org/10.1126/science.1095569
- 17 Chen CC, Jeon SM, Bhaskar PT, Nogueira V, Sundararajan D, Tonic I. et al. FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 2010; Apr; 18 (04) 592-604 https://doi.org/10.1016/j.devcel.2010.03.008
- 18 Kim MJ, Bae SH, Ryu JC, Kwon Y, Oh JH, Kwon J. et al. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 2016; Aug; 12 (08) 1272-1291 https://doi.org/10.1080/15548627.2016.1183081
- 19 Yang JH, Kim KM, Kim MG, Seo KH, Han JY, Ka SO. et al. Role of sestrin2 in the regulation of proinflammatory signaling in macrophages. Free Radic Biol Med 2015; Jan; 78: 156-167 https://doi.org/10.1016/j.freeradbiomed.2014.11.002
- 20 Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008; Aug; 134 (03) 451-460 https://doi.org/10.1016/j.cell.2008.06.028
- 21 Jegal KH, Ko HL, Park SM, Byun SH, Kang KW, Cho IJ. et al. Eupatilin induces Sestrin2-dependent autophagy to prevent oxidative stress. Apoptosis 2016; May; 21 (05) 642-656 https://doi.org/10.1007/s10495-016-1233-6
- 22 Saveljeva S, Cleary P, Mnich K, Ayo A, Pakos-Zebrucka K, Patterson JB. et al. Endoplasmic reticulum stress-mediated induction of sestrin2 potentiates cell survival. Oncotarget 2016; Mar; 7 (11) 12254-12266 https://doi.org/10.18632/oncotarget.7601
- 23 Xiao T, Zhang L, Huang Y, Shi Y, Wang J, Ji Q. et al. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci 2019; Feb; 218: 132-138 https://doi.org/10.1016/j.lfs.2018.12.043
- 24 Ye J, Wang M, Xu Y, Liu J, Jiang H, Wang Z. et al. Sestrins increase in patients with coronary artery disease and associate with the severity of coronary stenosis. Clin Chim Acta 2017; Sep; 472: 51-57 https://doi.org/10.1016/j.cca.2017.07.020
- 25 Rai N, Upadhyay AD, Goyal V, Dwivedi S, Dey AB, Dey S. Sestrin2 as serum protein marker and potential therapeutic target for Parkinson’s disease. J Gerontol A Biol Sci Med Sci 2020; Mar; 75 (04) 690-695 https://doi.org/10.1093/gerona/glz234
- 26 Rai N, Kumar R, Desal GR, Venugopalan G, Shekhar S, Chatterjee P. et al. Relative alterations in blood-based levels of sestrin in Alzheimer’s disease and mild cognitive impairment patients. J Alzheimers Dis 2016; Oct; 54 (03) 1147-1155 https://doi.org/10.3233/JAD-160479
- 27 Hwang HJ, Jung TW, Choi JH, Lee HJ, Chung HS, Seo JA. et al. Knockdown of sestrin2 increases pro-inflammatory reactions and ER stress in the endothelium via an AMPK dependent mechanism. Biochim Biophys Acta Mol Basis Dis 2017; Jun; 1863 (06) 1436-1444 https://doi.org/10.1016/j.bbadis.2017.02.018
- 28 Yang K, Xu C, Zhang Y, He S, Li D. Sestrin2 Suppresses Classically Activated Macrophages-Mediated Inflammatory Response in Myocardial Infarction through Inhibition of mTORC1 Signaling. Front Immunol 2017; Jun; 8: 728-728 https://doi.org/10.3389/fimmu.2017.00728
- 29 Kim MG, Yang JH, Kim KM, Jang CH, Jung JY, Cho IJ. et al. Regulation of Toll-like receptor-mediated Sestrin2 induction by AP-1, Nrf2, and the ubiquitin-proteasome system in macrophages. Toxicol Sci 2015; Apr; 144 (02) 425-435 https://doi.org/10.1093/toxsci/kfv012
- 30 Peng M, Yin N, Li MO. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 2014; Sep; 159 (01) 122-133 https://doi.org/10.1016/j.cell.2014.08.038
- 31 Zhang C, Sun W, Li J, Xiong B, Frye MD, Ding D. et al. Loss of sestrin 2 potentiates the early onset of age-related sensory cell degeneration in the cochlea. Neuroscience 2017; Oct; 361: 179-191 https://doi.org/10.1016/j.neuroscience.2017.08.015
- 32 Kallenborn-Gerhardt W, Lu R, Syhr KM, Heidler J, von Melchner H, Geisslinger G. et al. Antioxidant activity of sestrin 2 controls neuropathic pain after peripheral nerve injury. Antioxid Redox Signal 2013; Dec; 19 (17) 2013-2023 https://doi.org/10.1089/ars.2012.4958
- 33 Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med 2005; Dec; 11 (12) 1306-1313 https://doi.org/10.1038/nm1320
- 34 Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I. et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. Elife 2016; Feb; 5: e12204 https://doi.org/10.7554/eLife.12204