RSS-Feed abonnieren
DOI: 10.1590/0004-282X20170072
Critical analysis on the present methods for brain volume measurements in multiple sclerosis
Análise crítica dos métodos atuais para medidas de volume cerebral em esclerose múltiplaABSTRACT
Objective
The treatment of multiple sclerosis (MS) has quickly evolved from a time when controlling clinical relapses would suffice, to the present day, when complete disease control is expected. Measurement of brain volume is still at an early stage to be indicative of therapeutic decisions in MS.
Methods
This paper provides a critical review of potential biases and artifacts in brain measurement in the follow-up of patients with MS.
Results
Clinical conditions (such as hydration or ovulation), time of the day, type of magnetic resonance machine (manufacturer and potency), brain volume artifacts and different platforms for volumetric assessment of the brain can induce variations that exceed the acceptable physiological rate of annual loss of brain volume.
Conclusion
Although potentially extremely valuable, brain volume measurement still has to be regarded with caution in MS.
RESUMO
Objetivo
O tratamento da esclerose múltipla (EM) evoluiu rapidamente de um tempo onde o controle clínico dos surtos era suficiente para o momento atual, quando se almeja o completo controle da doença. Medidas de volume cerebral ainda estão em fases iniciais para utilização nas decisões terapêuticas na EM.
Métodos
Este artigo fornece uma revisão crítica de potenciais vieses e artefatos na volumetria cerebral utilizada no seguimento de pacientes com EM.
Resultados
Condições clínicas (como hidratação ou ovulação), hora do dia, tipo de máquina de ressonância magnética (fabricante e força do campo) artefatos de volume e diferentes plataformas de avaliação volumétrica cerebral podem induzir variações que excedem a taxa aceitável de perda anual fisiológica do volume cerebral.
Conclusão
Embora seja potencialmente de grande valor, a medida de volume cerebral ainda deve ser vista com cautela na EM.
Publikationsverlauf
Eingereicht: 24. November 2016
Angenommen: 30. März 2017
Artikel online veröffentlicht:
05. September 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Havrdova E, Galetta S, Stefoski D, Comi G. Freedom from disease activity in multiple sclerosis. Neurology. 2010;74(17 Suppl 3):S3-7. https://doi.org/10.1212/WNL.0b013e3181dbb51c
- 2 Gold R, Hartung HP, Stangel M, Wiendl H, Zipp F. Therapeutic goals of baseline and escalation therapy for relapsing-remitting multiple sclerosis. Aktuelle Neurol. 2012;39(7):342-50. https://doi.org/10.1055/s-0032-1305248
- 3 Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297-305. https://doi.org/10.1177/1352458515616701
- 4 De Stefano N, Stromillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87(1):93-9. https://doi.org/10.1136/jnnp-2014-309903
- 5 Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. 2014;75(1):43-9. https://doi.org/10.1002/ana.24018
- 6 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-52. https://doi.org/10.1212/WNL.33.11.1444
- 7 Jovicich J, Czanner S, Han X, Salat D, Kouwe A, Quinn B et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage. 2009;46(1):177-92. https://doi.org/10.1016/j.neuroimage.2009.02.010
- 8 Takao H, Hayashi N, Ohtomo K. Effect of scanner in longitudinal studies of brain volume changes. J Magn Reson Imaging. 2011;34(2):438-44. https://doi.org/10.1002/jmri.22636
- 9 Jovicich J, Czanner S, Greve D, Haley E, Kouwe A, Gollub R et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage. 2006;30(2):436-43. https://doi.org/10.1016/j.neuroimage.2005.09.046
- 10 Han X, Jovicich J, Salat D, Kouwe A, Quinn B, Czanner S et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006;32(1):180-94. https://doi.org/10.1016/j.neuroimage.2006.02.051
- 11 Streitbürger DP, Pampel A, Krueger G, Lepsien J, Schroeter ML, Mueller K et al. Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes. Neuroimage. 2014;87:170-82. https://doi.org/10.1016/j.neuroimage.2013.10.051
- 12 Chu R, Tauhid S, Glanz BI, Healy BC, Kim G, Oommen VV et al. Whole Brain Volume Measured from 1.5T versus 3T MRI in healthy subjects and patients with multiple sclerosis. J Neuroimaging. 2016;26(1):62-7. https://doi.org/10.1111/jon.12271
- 13 Huppertz HJ, Kröll-Seger J, Klöppel S, Ganz RE, Kassubek J. Intra- and interscanner variability of automated voxel-based volumetry based on a 3D probabilistic atlas of human cerebral structures. Neuroimage. 2010;49(3):2216-24. https://doi.org/10.1016/j.neuroimage.2009.10.066
- 14 Takao H, Hayashi N, Ohtomo K. Effects of the use of multiple scanners and of scanner upgrade in longitudinal voxel-based morphometry studies. J Magn Reson Imaging. 2013;38(5):1283-91. https://doi.org/10.1002/jmri.24038
- 15 Reuter M, Tisdall MD, Qureshi A, Buckner RL, van der Kouwe AJ, Fischl B. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. Neuroimage. 2015;107:107-15. https://doi.org/10.1016/j.neuroimage.2014.12.006
- 16 Caramanos Z, Fonov VS, Francis SJ, Narayanan S, Pike GB, Collins DL et al. Gradient distortions in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. Neuroimage. 2010;49(2):1601-11. https://doi.org/10.1016/j.neuroimage.2009.08.008
- 17 Brewer JB. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav Neurol. 2009;21(1):21-8. https://doi.org/10.1155/2009/616581
- 18 Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, Tur C, Tintoré M, Horga A et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013;19(9):1175-81. https://doi.org/10.1177/1352458512473190
- 19 Conforti R, Cirillo M, Saturnino PP, Gallo A, Sacco R, Negro A et al. Dilated Virchow-Robin spaces and multiple sclerosis: 3 T magnetic resonance study. Radiol Med (Torino). 2014;119(6):408-14. https://doi.org/10.1007/s11547-013-0357-9
- 20 Battaglini M, Jenkinson M, De Stefano N. Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp. 2012;33(9):2062-71. https://doi.org/10.1002/hbm.21344
- 21 Koudriavtseva T, Mainero C. Brain atrophy as a measure of neuroprotective drug effects in multiple sclerosis: influence of inflammation. Front Hum Neurosci. 2016;10:226. https://doi.org/10.3389/fnhum.2016.00226
- 22 Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128-37. https://doi.org/10.1001/archgenpsychiatry.2010.199
- 23 Talati A, Pantazatos SP, Hirsch J, Schneier F. A pilot study of gray matter volume changes associated with paroxetine treatment and response in social anxiety disorder. Psychiatry Res. 2015;231(3):279-85. https://doi.org/10.1016/j.pscychresns.2015.01.008
- 24 Hajek T, Weiner MW. Neuroprotective Effects of Lithium in Human Brain? Food for Thought. Curr Alzheimer Res. 2016;13(8):862-72. https://doi.org/10.2174/1567205013666160219112712
- 25 Kim H, Joo E, Suh S, Kim JH, Kim ST, Hong SB. Effects of long-term treatment on brain volume in patients with obstructive sleep apnea syndrome. Hum Brain Mapp. 2016;37(1):395-409. https://doi.org/10.1002/hbm.23038
- 26 Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. https://doi.org/10.3389/neuro.09.031.2009
- 27 Kempton MJ, Ettinger U, Foster R, Williams SC, Calvert GA, Hampshire A et al. Dehydration affects brain structure and function in healthy adolescents. Hum Brain Mapp. 2011;32(1):71-9. https://doi.org/10.1002/hbm.20999
- 28 Kempton MJ, Ettinger U, Schmechtig A, Winter EM, Smith L, McMorris T et al. Effects of acute dehydration on brain morphology in healthy humans. Hum Brain Mapp. 2009;30(1):291-8. https://doi.org/10.1002/hbm.20500
- 29 Duning T, Kloska S, Steinsträter O, Kugel H, Heindel W, Knecht S. Dehydration confounds the assessment of brain atrophy. Neurology. 2005;64(3):548-50. https://doi.org/10.1212/01.WNL.0000150542.16969.CC
- 30 Streitbürger DP, Möller HE, Tittgemeyer M, Hund-Georgiadis M, Schroeter ML, Mueller K. Investigating structural brain changes of dehydration using voxel-based morphometry. PLoS One. 2012;7(8):e44195. https://doi.org/10.1371/journal.pone.0044195
- 31 Nakamura K, Brown RA, Araujo D, Narayanan S, Arnold DL. Correlation between brain volume change and T2 relaxation time induced by dehydration and rehydration: implications for monitoring atrophy in clinical studies. Neuroimage Clin. 2014;6:166-70. https://doi.org/10.1016/j.nicl.2014.08.014
- 32 Nakamura K, Brown RA, Narayanan S, Collins DL, Arnold DL. Diurnal fluctuations in brain volume: statistical analyses of MRI from large populations. Neuroimage. 2015;118:126-32. https://doi.org/10.1016/j.neuroimage.2015.05.077
- 33 Hagemann G, Ugur T, Schleussner E, Mentzel HJ, Fitzek C, Witte OW et al. Changes in brain size during the menstrual cycle. PLoS One. 2011;6(2):e14655. https://doi.org/10.1371/journal.pone.0014655
- 34 Derakhshan M, Caramanos Z, Giacomini PS, Narayanan S, Maranzano J, Francis SJ et al. Evaluation of automated techniques for the quantification of grey matter atrophy in patients with multiple sclerosis. Neuroimage. 2010;52(4):1261-7. https://doi.org/10.1016/j.neuroimage.2010.05.029
- 35 Popescu V, Schoonheim MM, Versteeg A, Chaturvedi N, Jonker M, Menezes RX et al. Grey matter atrophy in multiple sclerosis: clinical interpretation depends on choice of analysis method. PLoS One. 2016;11(1):e0143942. https://doi.org/10.1371/journal.pone.0143942
- 36 Popescu V, Klaver R, Versteeg A, Voorn P, Twisk JW, Barkhof F et al. Postmortem validation of MRI cortical volume measurements in MS. Hum Brain Mapp. 2016;37(6):2223-33. https://doi.org/10.1002/hbm.23168
- 37 Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Neurology. 1999;53(8):1698-704. https://doi.org/10.1212/WNL.53.8.1698
- 38 Vågberg M, Lindqvist T, Ambarki K, Warntjes JB, Sundström P, Birgander R et al. Automated determination of brain parenchymal fraction in multiple sclerosis. AJNR Am J Neuroradiol. 2013;34(3):498-504. https://doi.org/10.3174/ajnr.A3262
- 39 Narayana PA, Govindarajan KA, Goel P, Datta S, Lincoln JA, Cofield SS et al. Regional cortical thickness in relapsing remitting multiple sclerosis: A multi-center study. Neuroimage Clin. 2012;2:120-31. https://doi.org/10.1016/j.nicl.2012.11.009
- 40 Govindarajan KA, Datta S, Hasan KM, Choi S, Rahbar MH, Cofield SS et al. Effect of in-painting on cortical thickness measurements in multiple sclerosis: A large cohort study. Hum Brain Mapp. 2015;36(10):3749-60. https://doi.org/10.1002/hbm.22875
- 41 Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG et al. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry. 2016;87(7):754-7. https://doi.org/10.1136/jnnp-2015-312304
- 42 Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17(1):479-89. https://doi.org/10.1006/nimg.2002.1040
- 43 Jain S, Sima DM, Ribbens A, Cambron M, Maertens A, Van Hecke W et al. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Neuroimage Clin. 2015;8:367-75. https://doi.org/10.1016/j.nicl.2015.05.003
- 44 Lysandropoulos AP, Absil J, Metens T, Mavroudakis N, Guisset F, Van Vlierberghe E et al. Quantifying brain volumes for Multiple Sclerosis patients follow-up in clinical practice - comparison of 1.5 and 3 Tesla magnetic resonance imaging. Brain Behav. 2016;6(2):e00422. https://doi.org/10.1002/brb3.422
- 45 Goodin DS, Reder AT, Bermel RA, Cutter GR, Fox RJ, Lublin FD et al. Relapses in multiple sclerosis: Relationship to disability. Mult Scler Relat Disord. 2016;6:10-20. https://doi.org/10.1016/j.msard.2015.09.002
- 46 Ziemssen T, Derfuss T, Stefano N, Giovannoni G, Palavra F, Tomic D et al. Optimizing treatment success in multiple sclerosis. J Neurol. 2016;263(6):1053-65. https://doi.org/10.1007/s00415-015-7986-y
- 47 Fragoso YD. Why some of us do not like the expression “no evidence of disease activity” (NEDA) in multiple sclerosis. Mult Scler Relat Disord. 2015;4(4):383-4. https://doi.org/10.1016/j.msard.2015.06.009
- 48 Freedman MS. Are we in need of NEDA? Mult Scler. 2016;22(1):5-6. https://doi.org/10.1177/1352458515617249
- 49 Damasceno A, Damasceno BP, Cendes F. No evidence of disease activity in multiple sclerosis: implications on cognition and brain atrophy. Mult Scler. 2016;22(1):64-72. https://doi.org/10.1177/1352458515604383
- 50 Biberacher V, Schmidt P, Keshavan A, Boucard CC, Righart R, Sämann P et al. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage. 2016;142:188-97. https://doi.org/10.1016/j.neuroimage.2016.07.035
- 51 Barkhof F. Brain atrophy measurements should be used to guide therapy monitoring in MS - NO. Mult Scler. 2016;22(12):1524-6. https://doi.org/10.1177/1352458516649452
- 52 Azevedo CJ, Pelletier D. Whole-brain atrophy: ready for implementation into clinical decision-making in multiple sclerosis? Curr Opin Neurol. 2016;29(3):237-42. https://doi.org/10.1097/WCO.20170072201700720322
- 53 Smith TB, Nayak KS. MRI Artifacts and correction strategies. Imaging Med. 2010;2(4):445-57. https://doi.org/10.2217/iim.10.33
- 54 Zivadinov R, Dwyer MG, Bergsland N. Brain atrophy measurements should be used to guide therapy monitoring in MS - YES. Mult Scler. 2016;22(12):1522-4. https://doi.org/10.1177/1352458516649253
- 55 Miller AE. Teriflunomide: a once-daily oral medication for the treatment of relapsing forms of multiple sclerosis. Clin Ther. 2015;37(10):2366-80. https://doi.org/10.1016/j.clinthera.2015.08.003
- 56 Radue EW, Sprenger T, Gaetano L, Mueller-Lenke N, Wuerfel J, Thangavelu K et al. Teriflunomide slows brain volume loss in relapsing MS: a SIENA analysis of the TEMSO MRI dataset. Neurology. 2016;86(16 Suppl).
- 57 Valverde S, Oliver A, Roura E, Pareto D, Vilanova JC, Ramió-Torrentà L et al. Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling. Neuroimage Clin. 2015;9:640-7. https://doi.org/10.1016/j.nicl.2015.10.012
- 58 Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain. 2016;139(1):115-26. https://doi.org/10.1093/brain/awv337
- 59 De Stefano N, Airas L, Grigoriadis N, Mattle HP, O’Riordan J, Oreja-Guevara C et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014;28(2):147-56. https://doi.org/10.1007/s40263-014-0140-z