Subscribe to RSS

DOI: 10.1590/0004-282X20180116
BsmI polymorphism in the vitamin D receptor gene is associated with 25-hydroxy vitamin D levels in individuals with cognitive decline
Polimorfismo BsmI no gene do receptor de vitamina D está associado aos níveis de 25-hidroxi vitamina D em indivíduos com declínio cognitivoAuthors
ABSTRACT
Elderly people are at a high risk of developing vitamin D (VitD) deficiency due to both decreased intake and cutaneous synthesis. Most of the biological actions of VitD are mediated by the vitamin D receptor (VDR), which is present in neurons and glial cells of the hippocampus, and in the cortex and subcortical nuclei, essential areas for cognition. It is known that VDR gene polymorphisms may decrease the VDR affinity for VitD. Objective: The present study aimed to investigate the influence of VitD levels on cognitive decline in patients with dementia due to Alzheimer's disease (AD, n = 32) and mild cognitive impairment (MCI, n = 15) compared to cognitively healthy elderly (n = 24). We also evaluated the association of VDR gene polymorphisms with cognitive disturbance. Methods: Four polymorphisms on the VDR gene were studied, namely, BsmI, ApaI, FokI and TaqI, by polymerase chain reaction-restriction fragment length polymorphism. Serum levels of 25-hydroxy vitamin D (25(OH)D) were determined by high performance liquid chromatography. Results: No significant difference in 25(OH)D levels or genotypic/allelic frequencies was observed between the groups. Deficiency of 25(OH)D was more frequently observed in women. The AA/AG genotypes of the BsmI polymorphism was associated with sufficient 25(OH)D levels, while the GG genotype of this same polymorphism was associated to insufficient levels in the cognitively-impaired group (individuals with AD or MCI). Conclusions: The data obtained do not confirm the relationship between reductions of VitD levels, polymorphisms in the VDR gene, and altered cognitive function in this sample. However, the data indicate that BsmI polymorphism in the VDR gene is associated with the VitD levels in individuals with cognitive decline.
RESUMO
Idosos apresentam risco elevado de desenvolverem deficiência de Vitamina D (VitD) devido à diminuição da ingestão e da síntese na pele. A maioria das ações biológicas da VitD é mediada pelo receptor da vitamina D (VDR), que está presente nos neurçnios e células gliais do hipocampo, e no córtex e em núcleos subcorticais, áreas essenciais para a cognição. Sabe-se que polimorfismos do gene VDR podem diminuir a afinidade do VDR pela VitD. Objetivo: O presente estudo teve como objetivo investigar a influência dos níveis de VitD no declínio cognitivo em pacientes com demência devida à doença de Alzheimer (DA, n = 32) e comprometimento cognitivo leve (CCL, n = 15) em comparação a um grupo de idosos cognitivamente saudáveis (n = 24). Nós também avaliamos a associação entre polimorfimos no gene do receptor de VitD e as alterações cognitivas. Métodos: Quatro polimorfismos no gene VDR foram estudados, sendo BsmI, ApaI, FokI e TaqI, por PCR-RFLP. Os níveis séricos de 25-hidroxi vitamina D (25(OH)D) foram determinados por HPLC. Resultados: Não houve diferença significativa nos níveis de 25(OH)D ou nas frequências genotípicas / alélicas entre os grupos. Níveis deficientes de 25(OH)D foram mais frequentes nas mulheres. Os genótipos AA / AG do polimorfismo BsmI foram associados a níveis suficientes de 25(OH)D, enquanto o genótipo GG deste mesmo polimorfismo foi associado a níveis insuficientes no grupo com comprometimento cognitivo (em indivíduos com DA ou CCL). Conclusões: Os resultados obtidos não confirmam a relação entre redução dos níveis de VitD, polimorfismos no gene VDR e função cognitiva alterada nesta amostra. No entanto, os dados indicam que o polimorfismo BsmI no gene VDR está associado aos níveis de VitD em indivíduos com declínio cognitivo.
Support
Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). LCS, PC, MGC and KBG are grateful to CNPq Research Fellowship (bolsa de produtividade em pesquisa).
Publication History
Received: 17 May 2018
Accepted: 20 July 2018
Article published online:
22 August 2023
© 2023. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 Alzheimer's Association. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 2015 Mar;11(3):332-84. https://doi.org/10.1016/j.jalz.2015.02.003
- 2 Dezsi L, Tuka B, Martos D, Vecsei L. Alzheimer's disease, astrocytes and kynurenines. Curr Alzheimer Res. 2015;12(5):462-80. https://doi.org/10.2174/156720501205150526114000
- 3 Caramelli P, Teixeira AL, Buchpiguel CA, Lee HW, Livramento JA, Fernandez LL et al. Diagnosis of Alzheimer's disease in Brazil: Supplementary exams. Dement Neuropsychol. 2011 Jul-Sep;5(3):167-77. https://doi.org/10.1590/S1980-57642011DN05030004
- 4 Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al.; International Psychogeriatric Association Expert Conference on mild cognitive impairment. Mild cognitive impairment. Lancet. 2006 Apr;367(9518):1262-70. https://doi.org/10.1016/S0140-6736(06)68542-5
- 5 Khorram Khorshid HR, Gozalpour E, Saliminejad K, Karimloo M, Ohadi M, Kamali K. Vitamin D Receptor (VDR) Polymorphisms and late-onset Alzheimer's disease: an association study. Iran J Public Health. 2013 Nov;42(11):1253-8.
- 6 Mathieu C, Badenhoop K. Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab. 2005 Aug;16(6):261-6. https://doi.org/10.1016/j.tem.2005.06.004
- 7 Kamel MM, Fouad SA, Salaheldin O, El-Razek AR, El-Fatah AI. Impact of vitamin D receptor gene polymorphisms in pathogenesis of Type-1 diabetes mellitus. Int J Clin Exp Med. 2014 Dec;7(12):5505-10.
- 8 Agnello L, Scazzone C, Ragonese P, Salemi G, Lo Sasso B, Schillaci R, et al. Vitamin D receptor polymorphisms and 25-hydroxyvitamin D in a group of Sicilian multiple sclerosis patients. Neurol Sci. 2016 Feb;37(2):261-7. https://doi.org/10.1007/s10072-015-2401-0
- 9 Reis GV, Gontijo NA, Rodrigues KF, Alves MT, Ferreira CN, Gomes KB. Vitamin D receptor polymorphisms and the polycystic ovary syndrome: A systematic review. J Obstet Gynaecol Res. 2017 Mar;43(3):436-46. https://doi.org/10.1111/jog.13250
- 10 Hooshmand B, Lökk J, Solomon A, Mangialasche F, Miralbell J, Spulber G et al. Vitamin D in relation to cognitive impairment, cerebrospinal fluid biomarkers, and brain volumes. J Gerontol A Biol Sci Med Sci. 2014 Sep;69(9):1132-8. https://doi.org/10.1093/gerona/glu022
- 11 Tucker KL. Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci. 2016 Mar;1367(1):38-49. https://doi.org/10.1111/nyas.13062
- 12 Balion C, Griffith LE, Strifler L, Henderson M, Patterson C, Heckman G et al. Vitamin D, cognition, and dementia: a systematic review and meta-analysis. Neurology. 2012 Sep;79(13):1397-405. https://doi.org/10.1212/WNL.0b013e31826c197f
- 13 Gangwar AK, Rawat A, Tiwari S, Tiwari SC, Narayan J, Tiwari S. Role of vitamin-D in the prevention and treatment of Alzheimer's disease. Indian J Physiol Pharmacol. 2015 Jan-Mar;59(1):94-9.
- 14 Annweiler C, Dursun E, Féron F, Gezen-Ak D, Kalueff AV, Littlejohns T, et al. ‘Vitamin D and cognition in older adults’: updated international recommendations. J Intern Med. 2015 Jan;277(1):45-57. https://doi.org/10.1111/joim.12279
- 15 Moon JH. Endocrine risk factors for cognitive impairment. Endocrinol Metab (Seoul). 2016 Jun;31(2):185-92. https://doi.org/10.3803/EnM.2016.31.2.185
- 16 Yeşil Y, Kuyumcu ME, Kara Ö, Halaçli B, Etgül S, Kizilarslanoğlu MC et al. Vitamin D status and its association with gradual decline in cognitive function. Turk J Med Sci. 2015;45(5):1051-7. https://doi.org/10.3906/sag-1405-11
- 17 Berti V, Murray J, Davies M, Spector N, Tsui WH, Li Y et al. Nutrient patterns and brain biomarkers of Alzheimer's disease in cognitively normal individuals. J Nutr Health Aging. 2015 Apr;19(4):413-23. https://doi.org/10.1007/s12603-014-0534-0
- 18 Gezen-Ak D, Dursun E, Bilgiç B, Hanağasi H, Ertan T, Gürvit H et al. Vitamin D receptor gene haplotype is associated with late-onset Alzheimer's disease. Tohoku J Exp Med. 2012 Nov;228(3):189-96. https://doi.org/10.1620/tjem.228.189
- 19 Łaczmański Ł, Jakubik M, Bednarek-Tupikowska G, Rymaszewska J, Słoka N, Lwow F. Vitamin D receptor gene polymorphisms in Alzheimer's disease patients. Exp Gerontol. 2015 Sep;69:142-7. https://doi.org/10.1016/j.exger.2015.06.012
- 20 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. https://doi.org/10.1016/j.jalz.2011.03.005
- 21 Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004 Sep;256(3):183-94. https://doi.org/10.1111/j.1365-2796.2004.01388.x
- 22 World Health Organization – WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. Geneve: World Health Organization; 2000. (WHO Technical Report Series, Vol. 894).
- 23 Ranjzad F, Mahban A, Shemirani AI, Mahmoudi T, Vahedi M, Nikzamir A et al. Influence of gene variants related to calcium homeostasis on biochemical parameters of women with polycystic ovary syndrome. J Assist Reprod Genet. 2011 Mar;28(3):225-32. https://doi.org/10.1007/s10815-010-9506-4
- 24 Hixson JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990 Mar;31(3):545-8.
- 25 Hymøller L, Jensen SK. Vitamin D analysis in plasma by high performance liquid chromatography (HPLC) with C(30) reversed phase column and UV detection—easy and acetonitrile-free. J Chromatogr A. 2011 Apr;1218(14):1835-41. https://doi.org/10.1016/j.chroma.2011.02.004
- 26 Schlögl M, Holick MF. Vitamin D and neurocognitive function. Clin Interv Aging. 2014 Apr;9:559-68. https://doi.org/10.2147/CIA.S51785
- 27 Assmann KE, Touvier M, Andreeva VA, Deschasaux M, Constans T, Hercberg S, et al. Midlife plasma vitamin D concentrations and performance in different cognitive domains assessed 13 years later. Br J Nutr. 2015 May;113(10):1628-37. https://doi.org/10.1017/S0007114515001051
- 28 Keeney JT, Butterfield DA. Vitamin D deficiency and Alzheimer disease: common links. Neurobiol Dis. 2015 Dec;84:84-98. https://doi.org/10.1016/j.nbd.2015.06.020
- 29 Landel V, Annweiler C, Millet P, Morello M, Féron F. Vitamin D, cognition and Alzheimer's disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis. 2016 May;53(2):419-44. https://doi.org/10.3233/JAD-150943
- 30 Graf CE, Rossi C, Giannelli SV, Nobari BH, Gold G, Herrmann FR et al. Vitamin D is not associated with cognitive status in a cohort of very old hospitalized patients. J Alzheimers Dis. 2014;42(Suppl 3):S53-61. https://doi.org/10.3233/JAD-132612
- 31 Ulstein I, Bøhmer T. Normal vitamin levels and nutritional indices in Alzheimer's disease patients with mild cognitive impairment or dementia with normal body mass indexes. J Alzheimers Dis. 2017;55(2):717-25. https://doi.org/10.3233/JAD-160393
- 32 DeLuca GC, Kimball SM, Kolasinski J, Ramagopalan SV, Ebers GC. Review: the role of vitamin D in nervous system health and disease. Neuropathol Appl Neurobiol. 2013 Aug;39(5):458-84. https://doi.org/10.1111/nan.12020
- 33 Monteiro Júnior FC, Mandarino NR, Santos EM, Santos AM, Salgado JV, Brito DJ et al. Correlation between serum 25-hydroxyvitamin D levels and carotid intima-media thickness in a Brazilian population descended from African slaves. Braz J Med Biol Res. 2018;51(4):e7185. https://doi.org/10.1590/1414-431x20177185
- 34 Aquino SL, Cunha AT, Pereira HT, Freitas EP, Fayh AP, Lima JG et al. Predictors of 25-hydroxyvitamin D status among individuals with metabolic syndrome: a cross-sectional study. Diabetol Metab Syndr. 2018 Jun;10(1):45. https://doi.org/10.1186/s13098-018-0346-1
- 35 Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet. 2011 Jan;377(9761):242-50. https://doi.org/10.1016/S0140-6736(10)61889-2
- 36 Luedecking-Zimmer E, DeKosky ST, Nebes R, Kamboh MI. Association of the 3´ UTR transcription factor LBP-1c/CP2/LSF polymorphism with late-onset Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet. 2003 Feb;117B(1):114-7. https://doi.org/10.1002/ajmg.b.10026
- 37 Lehmann DJ, Refsum H, Warden DR, Medway C, Wilcock GK, Smith AD. The vitamin D receptor gene is associated with Alzheimer's disease. Neurosci Lett. 2011 Oct;504(2):79-82. https://doi.org/10.1016/j.neulet.2011.08.057
- 38 Lee YH, Kim JH, Song GG. Vitamin D receptor polymorphisms and susceptibility to Parkinson's disease and Alzheimer's disease: a meta-analysis. Neurol Sci. 2014 Dec;35(12):1947-53. https://doi.org/10.1007/s10072-014-1868-4
- 39 Kuningas M, Mooijaart SP, Jolles J, Slagboom PE, Westendorp RG, Heemst D. VDR gene variants associate with cognitive function and depressive symptoms in old age. Neurobiol Aging. 2009 Mar;30(3):466-73. https://doi.org/10.1016/j.neurobiolaging.2007.07.001
