CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2013; 23(03): 212-218
DOI: 10.4103/0971-3026.120267
Head and Neck Radiology

Imaging features of rhinosporidiosis on contrast CT

Shailesh M Prabhu
Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
,
Aparna Irodi
Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
,
Hannah L Khiangte
Department of Radiology, Christian Medical College, Vellore, Tamil Nadu, India
,
V Rupa
Department of Oto-Rhino-Laryngology, Christian Medical College, Vellore, Tamil Nadu, India
,
P Naina
Department of Oto-Rhino-Laryngology, Christian Medical College, Vellore, Tamil Nadu, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Context: Rhinosporidiosis is a chronic granulomatous disease endemic in certain regions of India. Computed tomography (CT) imaging appearances of rhinosporidiosis have not been previously described in the literature. Aims: To study imaging features in rhinosporidiosis with contrast-enhanced CT and elucidate its role in the evaluation of this disease. Materials and Methods: Sixteen patients with pathologically proven rhinosporidiosis were included in the study. Contrast-enhanced CT images were analyzed retrospectively and imaging findings were correlated with surgical and histopathologic findings. Results: A total of 29 lesions were found and evaluated. On contrast-enhanced CT, rhinosporidiosis was seen as moderately enhancing lobulated or irregular soft tissue mass lesions in the nasal cavity (n = 13), lesions arising in nasal cavity and extending through choana into nasopharynx (n = 5), pedunculated polypoidal lesions arising from the nasopharyngeal wall (n = 5), oropharyngeal wall (n = 2), larynx (n = 1), bronchus (n = 1), skin and subcutaneous tissue (n = 2). The inferior nasal cavity comprising nasal floor, inferior turbinate, and inferior meatus was the most common site of involvement (n = 13). Surrounding bone involvement was seen in the form of rarefaction (n = 6), partial (n = 3) or complete erosion (n = 3) of inferior turbinate, thinning of medial maxillary wall (n = 2), and septal erosion (n = 2). Nasolacrimal duct involvement was seen in four cases. Conclusions: Contrast-enhanced CT has an important role in delineating the site and extent of the disease, as well as the involvement of surrounding bone, nasolacrimal duct and tracheobronchial tree. This provides a useful roadmap prior to surgery.



Publication History

Article published online:
30 July 2021

© 2013. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Mallick AA, Majhi TK, Pal DK. Rhinosporidiosis affecting multiple parts of the body. Trop Doct 2012;42:174-5.
  • 2 Fredricks DN, Jolley JA, Lepp PW, Kosek JC, Relman DA. Rhinosporidium seeberi: A human pathogen from a novel group of aquatic protistan parasites. Emerg Infect Dis 2000;6:273-82.
  • 3 Kumari R, Nath AK, Rajalakshmi R, Adityan B, Thappa DM. Disseminated cutaneous rhinosporidiosis: Varied morphological appearances on the skin. Indian J Dermatol Venereol Leprol 2009;75:68-71.
  • 4 Banjara H, Panda RK, Daharwal AV, Sudarshan V, Singh D, Gupta A. Bronchial rhinosporidiosis: An unusual presentation. Lung India 2012;29:173-5.
  • 5 Sudarshan V, Gahine R, Daharwal A, Kujur P, Hussain N, Krishnani C, et al. Rhinosporidiosis of the parotid duct presenting as a parotid duct cyst-A report of three cases. Indian J Med Microbiol 2012;30:108-11.
  • 6 Rekha P, Thomas B, Pappachan JM, Venugopal KP, Jayakumar TK, Sukumaran P. Tracheal rhinosporidiosis. J Thorac Cardiovasc Surg 2006;132:718-9.
  • 7 Pal DK, Mallick AA, Majhi TK, Biswas BK, Chowdhury MK. Rhinosporidiosis in southwest Bengal. Trop Doct 2012;42:150-3.
  • 8 Arora R, Gupta R, Dinda AK. Rhinosporidiosis of trachea: A clinical cause for concern. J Laryngol Otol 2008;122:e13.
  • 9 Saha J, Basu AJ, Sen I, Sinha R, Bhandari AK, Mondal S. Atypical presentations of rhinosporidiosis: A clinical dilemma? Indian J Otolaryngol Head Neck Surg 2011;63:243-6.
  • 10 Verma R, Vasudevan B, Pragasam V, Deb P, Langer V, Rajagopalan S. A case of disseminated cutaneous rhinosporidiosis presenting with multiple subcutaneous nodules and a warty growth. Indian J Dermatol Venereol Leprol 2012;78:520.
  • 11 Padmavathy L, Rao IL, Selvam SS, Sahoo CG. Disseminated cutaneous rhinosporidiosis in a HIV sero--positive patient. Indian J Dermatol Venereol Leprol 2001;67:332-3.
  • 12 Nayak S, Rout TK, Acharjya B, Patra MK. Subcutaneous Rhinosporidiosis. Indian J Dermatol 2008;53:41-3.
  • 13 Lloyd G, Howard D, Phelps P, Cheesman A. Juvenile angiofibroma: The lessons of 20 years of modern imaging. J Laryngol Otol 1999;113:127-34.
  • 14 Ojiri H, Ujita M, Tada S, Fukuda K. Potentially distinctive features of sinonasal inverted papilloma on MR imaging. AJR Am J Roentgenol 2000;175:465-8.
  • 15 Tiwari R, Hardillo JA, Mehta D, Slotman B, Tobi H, Croonenburg E, et al. Squamous cell carcinoma of maxillary sinus. Head Neck 2000;22:164-9.
  • 16 Lee DG, Lee SK, Chang HW, Kim JY, Lee HJ, Lee SM, et al. CT features of lobular capillary hemangioma of the nasal cavity. AJNR Am J Neuroradiol 2010;31:749-54.