CC BY-NC-ND 4.0 · Avicenna J Med 2016; 06(01): 17-27
DOI: 10.4103/2231-0770.173578
ORIGINAL ARTICLE

Phenotypic detection and molecular characterization of beta-lactamase genes among Citrobacter species in a tertiary care hospital

Ashok Kumar Praharaj
Department of Microbiology, AIIMS, Bhubaneshwar, Odisha, India
,
Atul Khajuria
Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
,
Mahadevan Kumar
Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
,
Naveen Grover
Department of Microbiology, Armed Forces Medical College, Pune, Maharashtra, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Objective: To examine the distribution, emergence, and spread of genes encoding beta-lactamase resistance in Citrobacter species isolated from hospitalized patients in a tertiary care hospital. Methods: A prospective study was conducted in a 1000-bed tertiary care center in Pune, India from October 2010 to October 2013. A total of 221 Citrobacter spp. isolates were recovered from clinical specimens from different patients (one isolate per patient) admitted to the surgical ward, medical ward and medical and surgical Intensive Care Units. Polymerase chain reaction (PCR) assays and sequencing were used to determine the presence of beta-lactamase encoding genes. Conjugation experiments were performed to determine their transferability. Isolate relatedness were determined by repetitive element based-PCR, enterobacterial repetitive intergenic consensus-PCR and randomly amplified polymorphic DNA. Results: Among 221 tested isolates of Citrobacter spp. recovered from various clinical specimens, 179 (80.9%) isolates showed minimum inhibitory concentration (MIC) >4 μg/ml against meropenem and imipenem. One hundred and forty-five isolates with increased MICs value against carbapenems were further processed for molecular characterization of beta-lactamase genes. Susceptibility profiling of the isolates indicated that 100% retained susceptibility to colistin. Conjugation experiments indicated that blaNDM-1was transferable via a plasmid. Conclusion: The ease of NDM-1 plasmid transmissibility may help their dissemination among the Citrobacter species as well as to others in Enterobacteriaceae. Early detection, antimicrobial stewardship and adequate infection control measures will help in limiting the spread of these organisms.



Publication History

Article published online:
09 August 2021

© 2016. Syrian American Medical Society. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Washington WC Jr, Allen SD, Janda WM, Koneman EW, Gary PW, Schreckenberger PC, et al. The Enterobacteriaceae. Color Atlas and Textbook of Diagnostic Microbiology. 6th ed., Ch. 6. Philadelphia: Lippincott Williams and Wilkins; 2006. p. 211-302.
  • 2 Abbott SL. Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and Other Enterobacteriaceae. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Landry ML, editors. Manual of Clinical Microbiology. 9th ed. New York: ASM Press; 2007. p. 698-715.
  • 3 Holmes B, Aucken HM. Citrobacter, Enterobacter, Klebsiella, Serratia and other members of the Enterobacteriaceae. In: Collier L, Balows A, Sussman M, editors. Microbiology and Microbial Infections: Systematic Bacteriology. 9th ed. London: Arnold; 1998. p. 999-1033.
  • 4 Khadka SB, Thapa B, Mahat K. Nosocomial Citrobacter infection in neonatal intensive care unit in a hospital of Nepal. J Nepal Paediatr Soc 2010;31:105-9.
  • 5 Thapa B, Tribuddharat C. Molecular characterization of Citrobacter freundii isolated from neonates in Neonatal Intensive Care Unit of Nepal. J Nepal Paediatr Soc 2012;32:132-5.
  • 6 Pepperell C, Kus JV, Gardam MA, Humar A, Burrows LL. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob Agents Chemother 2002;46:3555-60.
  • 7 Doran TI. The role of Citrobacter in clinical disease of children: Review. Clin Infect Dis 1999;28:384-94.
  • 8 Collee JG, Miles RS, Wan B. Tests for the identification of bacteria. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and McCartney Practical Medical Microbiology. 14th ed. Edinburgh: Churchill Livingstone; 1996. p. 131-50.
  • 9 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty Second Informational Supplement M100-S22. Wayne, PA, USA: CLSI; 2012.
  • 10 European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for Interpretation of MICs and Zone Diameters (Version 2); 2012. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCASTfiles/Breakpointtables/Breakpointtablev2.0120221.pdf. [Last accessed on 2014 Feb 23].
  • 11 Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41:4623-9.
  • 12 Franklin C, Liolios L, Peleg AY. Phenotypic detection of carbapenem-susceptible metallo-beta-lactamase-producing gram-negative bacilli in the clinical laboratory. J Clin Microbiol 2006;44:3139-44.
  • 13 Oliver A, Weigel LM, Rasheed JK, McGowan JE Jr, Raney P, Tenover FC. Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli. Antimicrob Agents Chemother 2002;46:3829-36.
  • 14 Villalón P, Valdezate S, Medina-Pascual MJ, Carrasco G, Vindel A, Saez-Nieto JA. Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-ß-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. J Antimicrob Chemother 2013;68:550-3.
  • 15 Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: The phantom menace. J Antimicrob Chemother 2012;67:1597-606.
  • 16 Hong SS, Kim K, Huh JY, Jung B, Kang MS, Hong SG. Multiplex PCR for rapid detection of genes encoding class A carbapenemases. Ann Lab Med 2012;32:359-61.
  • 17 Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991;19:6823-31.
  • 18 Vogel L, Jones G, Triep S, Koek A, Dijkshoorn L. RAPD typing of Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens and Pseudomonas aeruginosa isolates using standardized reagents. Clin Microbiol Infect 1999;5:270-6.
  • 19 Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 2005;63:219-28.
  • 20 Collin BA, Leather HL, Wingard JR, Ramphal R. Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis 2001;33:947-53.
  • 21 Lipsky BA, Hook EW 3rd, Smith AA, Plorde JJ. Citrobacter infections in humans: Experience at the Seattle Veterans Administration Medical Center and a review of the literature. Rev Infect Dis 1980;2:746-60.
  • 22 Kline MW. Citrobacter meningitis and brain abscess in infancy: Epidemiology, pathogenesis, and treatment. J Pediatr 1988;113:430-4.
  • 23 Gupta N, Yadav A, Choudhary U, Arora DR. Citrobacter bacteremia in a tertiary care hospital. Scand J Infect Dis 2003;35:765-8.
  • 24 Drelichman V, Band JD. Bacteremias due to Citrobacter diversus and Citrobacter freundii. Incidence, risk factors, and clinical outcome. Arch Intern Med 1985;145:1808-10.
  • 25 Khanna A, Singh N, Aggarwa AI, Khanna M. The antibiotic resistance pattern in Citrobacter species: An emerging nossocomial pathogen in a tertiary care hospital. J Clin Diagn Res 2012;6:642-4.
  • 26 Shih CC, Chen YC, Chang SC, Luh KT, Hsieh WC. Bacteremia due to Citrobacter species: Significance of primary intraabdominal infection. Clin Infect Dis 1996;23:543-9.
  • 27 Kanamori H, Yano H, Hirakata Y, Endo S, Arai K, Ogawa M, et al. High prevalence of extended-spectrum ß-lactamases and qnr determinants in Citrobacter species from Japan: Dissemination of CTX-M-2. J Antimicrob Chemother 2011;66:2255-62.
  • 28 Khorasani G, Salehifar E, Eslami G. Profile of microorganisms and antimicrobial resistance at a tertiary care referral burn centre in Iran: Emergence of Citrobacter freundii as a common microorganism. Burns 2008;34:947-52.
  • 29 Samonis G, Karageorgopoulos DE, Kofteridis DP, Matthaiou DK, Sidiropoulou V, Maraki S, et al. Citrobacter infections in a general hospital: Characteristics and outcomes. Eur J Clin Microbiol Infect Dis 2009;28:61-8.
  • 30 Mohanty S, Singhal R, Sood S, Dhawan B, Kapil A, Das BK. Citrobacter infections in a tertiary care hospital in Northern India. J Infect 2007;54:58-64.
  • 31 Fernandes R, Amador P, Oliveira C, Prudêncio C. Molecular characterization of ESBL-producing Enterobacteriaceae in northern Portugal. ScientificWorldJournal 2014;2014:782897.
  • 32 Ali AM, Rafi S, Qureshi AH. Frequency of extended spectrum beta lactamase producing gram negative bacilli among clinical isolates at clinical laboratories of Army Medical College, Rawalpindi. J Ayub Med Coll Abbottabad 2004;16:35-7.
  • 33 Tian GB, Adams-Haduch JM, Qureshi ZA, Wang HN, Doi Y. CTX-M-35 extended-spectrum beta-lactamase conferring ceftazidime resistance in Citrobacter koseri. Int J Antimicrob Agents 2010;35:412-3.
  • 34 Abdalhamid B, Pitout JD, Moland ES, Hanson ND. Community-onset disease caused by Citrobacter freundii producing a novel CTX-M beta-lactamase, CTX-M-30, in Canada. Antimicrob Agents Chemother 2004;48:4435-7.
  • 35 Zhang R, Yang L, Cai JC, Zhou HW, Chen GX. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol 2008;57(Pt 3):332-7.
  • 36 Munday CJ, Whitehead GM, Todd NJ, Campbell M, Hawkey PM. Predominance and genetic diversity of community- and hospital-acquired CTX-M extended-spectrum beta-lactamases in York, UK. J Antimicrob Chemother 2004;54:628-33.
  • 37 Lartigue MF, Fortineau N, Nordmann P. Spread of novel expanded-spectrum beta-lactamases in Enterobacteriaceae in a university hospital in the Paris area, France. Clin Microbiol Infect 2005;11:588-91.
  • 38 Baraniak A, Fiett J, Sulikowska A, Hryniewicz W, Gniadkowski M. Countrywide spread of CTX-M-3 extended-spectrum beta- lactamase-producing microorganisms of the family Enterobacteriaceae in Poland. Antimicrob Agents Chemother 2002;46:151-9.
  • 39 Kim J, Lim YM. Prevalence of derepressed ampC mutants and extended-spectrum beta-lactamase producers among clinical isolates of Citrobacter freundii, Enterobacter spp. and Serratia marcescens in Korea: Dissemination of CTX-M-3, TEM-52, and SHV-12. J Clin Microbiol 2005;43:2452-5.
  • 40 Miró E, Mirelis B, Navarro F, Rivera A, Mesa RJ, Roig MC, et al. Surveillance of extended-spectrum beta-lactamases from clinical samples and faecal carriers in Barcelona, Spain. J Antimicrob Chemother 2005;56:1152-5.
  • 41 Kumar S, Bandyopadhyay M, Mondal S, Pal N, Ghosh T, Bandyopadhyay M, et al. Tigecycline activity against metallo-ß-lactamase-producing bacteria. Avicenna J Med 2013;3:92-6.
  • 42 Islam MA, Talukdar PK, Hoque A, Huq M, Nabi A, Ahmed D, et al. Emergence of multidrug-resistant NDM-1-producing gram-negative bacteria in Bangladesh. Eur J Clin Microbiol Infect Dis 2012;31:2593-600.
  • 43 Yanik K, Emir D, Eroglu C, Karadag A, Güney AK, Günaydin M. Investigation of the presence of New Delhi metallo-beta-lactamase-1 (NDM-1) by PCR in carbapenem-resistant gram-negative isolates. Mikrobiyol Bul 2013;47:382-4.
  • 44 Rimrang B, Chanawong A, Lulitanond A, Wilailuckana C, Charoensri N, Sribenjalux P, et al. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J Antimicrob Chemother 2012;67:2626-30.
  • 45 Denis C, Poirel L, Carricajo A, Grattard F, Fascia P, Verhoeven P, et al. Nosocomial transmission of NDM-1-producing Escherichia coli within a non-endemic area in France. Clin Microbiol Infect 2012;18:E128-30.
  • 46 Rubin JE, Peirano G, Peer AK, Govind CN, Pitout JD. NDM-1-producing Enterobacteriaceae from South Africa: Moving towards endemicity? Diagn Microbiol Infect Dis 2014;79:378-80.
  • 47 Sonnevend A, Al Baloushi A, Ghazawi A, Hashmey R, Girgis S, Hamadeh MB, et al. Emergence and spread of NDM-1 producer Enterobacteriaceae with contribution of IncX3 plasmids in the United Arab Emirates. J Med Microbiol 2013;62(Pt 7):1044-50.
  • 48 Peirano G, Ahmed-Bentley J, Fuller J, Rubin JE, Pitout JD. Travel-related carbapenemase-producing gram-negative bacteria in Alberta, Canada: The first 3 years. J Clin Microbiol 2014;52:1575-81.
  • 49 Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. J Clin Microbiol 2012;50:3877-80.
  • 50 Poirel L, Ros A, Carricajo A, Berthelot P, Pozzetto B, Bernabeu S, et al. Extremely drug-resistant Citrobacter freundii isolate producing NDM-1 and other carbapenemases identified in a patient returning from India. Antimicrob Agents Chemother 2011;55:447-8.
  • 51 Yan JJ, Ko WC, Chuang CL, Wu JJ. Metallo-beta-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: Prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J Antimicrob Chemother 2002;50:503-11.
  • 52 Hawkey PM, Xiong J, Ye H, Li H, M'Zali FH. Occurrence of a new metallo-beta-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People's Republic of China. FEMS Microbiol Lett 2001;194:53-7.
  • 53 Wendel AF, Brodner AH, Wydra S, Ressina S, Henrich B, Pfeffer K, et al. Genetic characterization and emergence of the metallo-ß-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a long-term outbreak. Antimicrob Agents Chemother 2013;57:5162-5.
  • 54 Deshpande LM, Jones RN, Fritsche TR, Sader HS. Occurrence and characterization of carbapenemase-producing Enterobacteriaceae: Report from the SENTRY Antimicrobial Surveillance Program (2000-2004). Microb Drug Resist 2006;12:223-30.
  • 55 Mavroidi A, Neonakis I, Liakopoulos A, Papaioannou A, Ntala M, Tryposkiadis F, et al. Detection of Citrobacter koseri carrying beta-lactamase KPC-2 in a hospitalised patient, Greece, July 2011. Euro Surveill 2011;16. pii: 19990.