CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2017; 27(04): 404-412
DOI: 10.4103/ijri.IJRI_503_16
Thoracic/ Cardiac

Cardiac magnetic resonance techniques: Our experience on wide bore 3 tesla magnetic resonance system

Onkar B Auti
Department of Radio-diagnosis, Narayana Health City, Bengaluru, Karnataka; Department of Radio-diagnosis, Jupiter Hospital, Thane, Maharashtra, India
,
Kalashree Bandekar
Department of Radio-diagnosis, Jupiter Hospital, Thane, Maharashtra, India
,
Nikhil Kamat
Department of Radio-diagnosis, Jupiter Hospital, Thane, Maharashtra, India
,
Vimal Raj
Department of Radio-diagnosis, Narayana Health City, Bengaluru, Karnataka, India
› Author Affiliations
Financial support and sponsorship Nil.

Abstract

Cardiovascular magnetic resonance (CMR) has become a widely adapted imaging modality in the diagnosis and management of patients with cardiovascular diseases. It provides unparalleled data of cardiac function and myocardial morphology. Majority of CMR imaging is currently being performed on 1.5 Tesla (T) MR systems. Over the last many years, the cardiac imaging protocols have been standardized and optimized in the 1.5T systems. 3T MR systems are now being used more and more in small and large institutions in our country due to their proven advantages in the field of neuro, body, and musculoskeletal imaging. Cardiac imaging on 3T system can be a double-edged sword. On one hand, it may provide nondiagnostic images due to significant artifacts, and on the other hand, it may complete the examination in quick time and provide excellent quality images. It is therefore important for the user to be aware of the potential pitfalls of CMR in 3T systems and also the necessary steps to avoid them. In this study, we discuss various challenges and advantages of performing CMR in a 3T system. We also present potential technical solutions to improve the image quality.



Publication History

Article published online:
27 July 2021

© 2017. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Patel MR, Spertus JA, Brindis RG, Hendel RC, Douglas PS, Peterson ED, et al. ACCF proposed method for evaluating the appropriateness of cardiovascular imaging. J Am Coll Cardiol 2005;46:1606-13.
  • 2 Alvarez-Linera J. 3T MRI: Advances in brain imaging. Eur J Radiol 2008;67:415-26.
  • 3 Couñago F, del Cerro E, Recio M, Díaz A, Marcos F. 3T functional MRI in prostate cancer: Clinical implications. Reports of Practical Oncology and Radiotherapy 2013;18:S93-4.
  • 4 Krishnan S, Hecht E. Update on liver MRI at 3T. Imaging in Medicine 2011;3:51-65.
  • 5 Mosher TJ. Musculoskeletal imaging at 3T: Current techniques and future applications. Magn Reson Imaging Clin N Am 2006;14:63-76.
  • 6 Bernstein MA, Huston J, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging 2006;24:735-46.
  • 7 Nacif MS, Zavodni A, Kawel N, Choi EY, Lima JA, Bluemke DA, et al. Cardiac magnetic resonance imaging and its electrocardiographs (ECG): Tips and tricks. Int J Cardiovasc Imaging 2011;28:1465-75.
  • 8 Miller S, Simonetti O, Carr J, Kramer U, Finn J. MR imaging of the heart with cine true fast imaging with steady-state precession: Influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 2002;223:263-9.
  • 9 Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: True fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: Feasibility study. Radiology 2001;219:264-9.
  • 10 Fischbach F, Müller M, Bruhn H. Magnetic resonance imaging of the cranial nerves in the posterior fossa: A comparative study of T2-weighted spin-echo sequences at 1.5 and 3.0 tesla. Acta Radiologica 2008;49:358-63.
  • 11 Voros S, Kramer C. Cardiovascular magnetic resonance imaging: State of the art. CCR 2005;1:181-8.
  • 12 Wen H, Jaffer F, Denison T, Duewell S, Chesnick A, Balaban R. The evaluation of dielectric resonators containing H2O or D2O as RF coils for high-field MR imaging and spectroscopy. J Magn Reson B 1996;110:117-23.
  • 13 Wintersperger B, Bauner K, Reeder S, Dietrich O, Sprung K, Reiser M, et al. Accelerated cardiac CINE MR imaging on multi-channel 3 Tesla: Comparison of signal parameters and volumetric accuracy to 1.5 Tesla. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebendenVerfahren 2006;178.
  • 14 Nael K, Fenchel M, Saleh R, Finn J. Cardiac MR imaging: New advances and role of 3T. Magn Reson Imaging Clin N Am 2007;15:291-300.
  • 15 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol 2003;13:2409-18.
  • 16 Nayak KS, Lee HL, Hargreaves BA, Hu BS. Wideband SSFP: Alternating repetition time balanced steady state free precession with increased band spacing. Magn Reson Med 2007;58:931-8.
  • 17 Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med 2003;49:803-9.
  • 18 Jeung MY, Germain P, Croisille P, El Ghannudi S, Roy C, Gangi A, et al. Myocardial tagging with MR imaging: Overview of normal and pathologic findings. Radiographics 2012;32:1381-98.
  • 19 Chow K, Flewitt JA, Green JD, Pagona JJ, Friedrich MG, Thompson RB, et al. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med 2014;71:2082-95.
  • 20 Piechnik S, Ferreira V, Lewandowski A, Sado DM, White SK, Moon JC, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13.
  • 21 Ferreira V, Piechnik S, Dall'Armellina E, Francis JM, Kardos A, Robson MD, et al. T1-mapping for the diagnosis of acute myocarditis using cardiovascular magnetic resonance: Comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 2013;6:1048-58.
  • 22 Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475-84.
  • 23 Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Robson Md, Moon JC, et al. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 2013;6:488-97.
  • 24 Thavendiranathan P, Walls M, Giri S, Rajgopalan S, Moore S, Raman SV, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 2011;5:102-10.
  • 25 Usman AA, Taimen K, Wasielewski M, Shah S, Giri S, Markl M, et al. Cardiac magnetic resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection: A pilot study. Circ Cardiovasc Imaging 2012;5:782-90.
  • 26 Van Heeswijk RB, Feliciano H, Bongard C, Coppo S, Lauriers N, Locca D, et al. Freebreathing 3 T magnetic resonance T2-mapping of the heart. JACC Cardiovasc Imaging 2012;5:1231-9.
  • 27 Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajgopalan S, Raman SV, et al. Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 2011;4:269-78.
  • 28 Jerosch-Herold M, Muehling O, Wilke N. MRI of myocardial perfusion. Semin Ultrasound CT MR 2006;27:2-10.
  • 29 Fenchel M, Kramer U, Nael K, Miller S. Cardiac magnetic resonance imaging at 3.0 T. Top Magn Reson Imaging 2007;18:95-104.
  • 30 Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, et al. Diagnostic performance of myocardial perfusion MR at 3 T in patients with coronary artery disease. Radiology 2008;247:57-63.
  • 31 Kim D, Axel L. Multislice, dual-imaging sequence for increasing the dynamic range of the contrast-enhanced blood signal and CNR of myocardial enhancement at 3T. J Magn Reson Imaging 2006;23:81-6.
  • 32 Isbell DC, Kramer CM. Magnetic resonance for the assessment of myocardial viability. Curr Opin Cardiol 2006;21:469-72.
  • 33 Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Judd RM, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445-53.
  • 34 Klumpp B, Fenchel M, Hoevelborn T, Helber U, Scheule A, Claussen C, et al. Assessment of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0 Tesla. Invest Radiol 2006;41:661-7.
  • 35 Ligabue G, Fiocchi F, Ferraresi S, Barbieri A, Rossi R, Modena MG, et al. 3-Tesla MRI for the evaluation of myocardial viability: A comparative study with 1.5-Tesla MRI. Radiol Med 2008;113:347-62.
  • 36 Huber A, Bauner K, Wintersperger BJ, Reeder SB, Stadie F, Mueller E, et al. Phase-sensitive inversion recovery (PSIR) single-shot true FISP for assessment of myocardial infarction at 3 Tesla. Invest Radiol 2006;41:148-53.
  • 37 Bauner KU, Muehling O, Wintersperger BJ, Winnik E, Reiser MF, Huber A. Inversion recovery single-shot Turbo FLASH for assessment of myocardial infarction at 3 Tesla. Invest Radiol 2007;42:361-71.
  • 38 Kellman P, Arai AE, Mcveigh ER, Aletras AH. Phase-sensitive inversion phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 2002;383:372-83.
  • 39 Biglands J, Radjenovic A, Ridgway J. Cardiovascular magnetic resonance physics for clinicians: Part II. J Cardiovasc Magn Reson 2012;14:66.
  • 40 Lotz J, Doker R, Noeske R, Felix R, Galanski M, Meyer GP, et al. In vitro validation of phase-contrast flow measurements at 3 T in comparison to 1.5 T: Precision, accuracy, and signal-to-noise ratios. J Magn Reson Imaging 2005;21:604-10.
  • 41 Pai VM. Phase contrast using multiecho steady-state free precession. Magn Reson Med 2007;58:419-24.
  • 42 Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001;22:2171-9.
  • 43 Anderson LJ, Westwood MA, Holden S, Davis B, Prescott E, Porter JB, et al. Myocardial iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine: A prospective study using T2 ∗ cardiovascular magnetic resonance. Br J Haematol 2004;127:348-55.
  • 44 Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, et al. Interscanner reproducibility of cardiovascular magnetic resonance T2 ∗ measurements of tissue iron in thalassemia. J Magn Reson Imaging 2003;18:616-20.
  • 45 Abdel-Gadir A, Vorasettakarnkij Y, Ngamkasem H, Nordin S, Ako E, Tumkosit M, et al. Ultrafast CMR to deliver high volume screening of an at risk thalassemia population in the developing world: Preliminary results from the TIC-TOC study (Thailand and UK international collaboration in thalassaemia using an optimised ultrafast CMR protocol). J Cardiovasc Magn Reson 2016;18:39.
  • 46 Storey P, Thompson A, Carqueville C, Wood J, de Freitas R, Rigsby C. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging 2007;25:540-7.
  • 47 He T, Kirk P, Firmin DN, Lam WM, Chu WC, Au WY, et al. Multi-center transferability of a breath-hold T2 technique for myocardial iron assessment. J Cardiovasc Magn Reson 2008;10:11.
  • 48 Alam MH, Auger D, McGill LA, Smith GC, Wage R, Drivas P, et al. Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron. J Cardiovasc Magn Reson 2016;18.
  • 49 Shellock FG. Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0-Tesla MR system. J Magn Reson Imaging 2002;16:721-32.