Subscribe to RSS

DOI: 10.4103/ijri.IJRI_503_16
Cardiac magnetic resonance techniques: Our experience on wide bore 3 tesla magnetic resonance system
Financial support and sponsorship Nil.

Abstract
Cardiovascular magnetic resonance (CMR) has become a widely adapted imaging modality in the diagnosis and management of patients with cardiovascular diseases. It provides unparalleled data of cardiac function and myocardial morphology. Majority of CMR imaging is currently being performed on 1.5 Tesla (T) MR systems. Over the last many years, the cardiac imaging protocols have been standardized and optimized in the 1.5T systems. 3T MR systems are now being used more and more in small and large institutions in our country due to their proven advantages in the field of neuro, body, and musculoskeletal imaging. Cardiac imaging on 3T system can be a double-edged sword. On one hand, it may provide nondiagnostic images due to significant artifacts, and on the other hand, it may complete the examination in quick time and provide excellent quality images. It is therefore important for the user to be aware of the potential pitfalls of CMR in 3T systems and also the necessary steps to avoid them. In this study, we discuss various challenges and advantages of performing CMR in a 3T system. We also present potential technical solutions to improve the image quality.
Keywords
3T magnetic resonance (MR) system - cardiac MR - Cardiovascular magnetic resonance techniquesPublication History
Article published online:
27 July 2021
© 2017. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India
-
References
- 1 Patel MR, Spertus JA, Brindis RG, Hendel RC, Douglas PS, Peterson ED, et al. ACCF
proposed method for evaluating the appropriateness of cardiovascular imaging. J Am
Coll Cardiol 2005;46:1606-13.
- 2 Alvarez-Linera J. 3T MRI: Advances in brain imaging. Eur J Radiol 2008;67:415-26.
- 3 Couñago F, del Cerro E, Recio M, Díaz A, Marcos F. 3T functional MRI in prostate
cancer: Clinical implications. Reports of Practical Oncology and Radiotherapy 2013;18:S93-4.
- 4 Krishnan S, Hecht E. Update on liver MRI at 3T. Imaging in Medicine 2011;3:51-65.
- 5 Mosher TJ. Musculoskeletal imaging at 3T: Current techniques and future applications.
Magn Reson Imaging Clin N Am 2006;14:63-76.
- 6 Bernstein MA, Huston J, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging
2006;24:735-46.
- 7 Nacif MS, Zavodni A, Kawel N, Choi EY, Lima JA, Bluemke DA, et al. Cardiac magnetic
resonance imaging and its electrocardiographs (ECG): Tips and tricks. Int J Cardiovasc
Imaging 2011;28:1465-75.
- 8 Miller S, Simonetti O, Carr J, Kramer U, Finn J. MR imaging of the heart with cine
true fast imaging with steady-state precession: Influence of spatial and temporal
resolutions on left ventricular functional parameters. Radiology 2002;223:263-9.
- 9 Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular
function: True fast imaging with steady-state precession versus fast low-angle shot
cine MR imaging: Feasibility study. Radiology 2001;219:264-9.
- 10 Fischbach F, Müller M, Bruhn H. Magnetic resonance imaging of the cranial nerves
in the posterior fossa: A comparative study of T2-weighted spin-echo sequences at
1.5 and 3.0 tesla. Acta Radiologica 2008;49:358-63.
- 11 Voros S, Kramer C. Cardiovascular magnetic resonance imaging: State of the art. CCR
2005;1:181-8.
- 12 Wen H, Jaffer F, Denison T, Duewell S, Chesnick A, Balaban R. The evaluation of dielectric
resonators containing H2O or D2O as RF coils for high-field MR imaging and spectroscopy.
J Magn Reson B 1996;110:117-23.
- 13 Wintersperger B, Bauner K, Reeder S, Dietrich O, Sprung K, Reiser M, et al. Accelerated
cardiac CINE MR imaging on multi-channel 3 Tesla: Comparison of signal parameters
and volumetric accuracy to 1.5 Tesla. RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen
und der bildgebendenVerfahren 2006;178.
- 14 Nael K, Fenchel M, Saleh R, Finn J. Cardiac MR imaging: New advances and role of
3T. Magn Reson Imaging Clin N Am 2007;15:291-300.
- 15 Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques.
Eur Radiol 2003;13:2409-18.
- 16 Nayak KS, Lee HL, Hargreaves BA, Hu BS. Wideband SSFP: Alternating repetition time
balanced steady state free precession with increased band spacing. Magn Reson Med
2007;58:931-8.
- 17 Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary
arteries by adjusting imaging frequency. Magn Reson Med 2003;49:803-9.
- 18 Jeung MY, Germain P, Croisille P, El Ghannudi S, Roy C, Gangi A, et al. Myocardial
tagging with MR imaging: Overview of normal and pathologic findings. Radiographics
2012;32:1381-98.
- 19 Chow K, Flewitt JA, Green JD, Pagona JJ, Friedrich MG, Thompson RB, et al. Saturation
recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med
2014;71:2082-95.
- 20 Piechnik S, Ferreira V, Lewandowski A, Sado DM, White SK, Moon JC, et al. Normal
variation of magnetic resonance T1 relaxation times in the human population at 1.5T
using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13.
- 21 Ferreira V, Piechnik S, Dall'Armellina E, Francis JM, Kardos A, Robson MD, et al.
T1-mapping for the diagnosis of acute myocarditis using cardiovascular magnetic resonance:
Comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging
2013;6:1048-58.
- 22 Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping
in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated
cardiomyopathy. JACC Cardiovasc Imaging 2013;6:475-84.
- 23 Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Robson Md, Moon JC, et al.
Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging
2013;6:488-97.
- 24 Thavendiranathan P, Walls M, Giri S, Rajgopalan S, Moore S, Raman SV, et al. Improved
detection of myocardial involvement in acute inflammatory cardiomyopathies using T2
mapping. Circ Cardiovasc Imaging 2011;5:102-10.
- 25 Usman AA, Taimen K, Wasielewski M, Shah S, Giri S, Markl M, et al. Cardiac magnetic
resonance T2 mapping in the monitoring and follow-up of acute cardiac transplant rejection:
A pilot study. Circ Cardiovasc Imaging 2012;5:782-90.
- 26 Van Heeswijk RB, Feliciano H, Bongard C, Coppo S, Lauriers N, Locca D, et al. Freebreathing
3 T magnetic resonance T2-mapping of the heart. JACC Cardiovasc Imaging 2012;5:1231-9.
- 27 Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajgopalan S, Raman SV, et al. Direct
T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging
2011;4:269-78.
- 28 Jerosch-Herold M, Muehling O, Wilke N. MRI of myocardial perfusion. Semin Ultrasound
CT MR 2006;27:2-10.
- 29 Fenchel M, Kramer U, Nael K, Miller S. Cardiac magnetic resonance imaging at 3.0
T. Top Magn Reson Imaging 2007;18:95-104.
- 30 Gebker R, Jahnke C, Paetsch I, Kelle S, Schnackenburg B, Fleck E, et al. Diagnostic
performance of myocardial perfusion MR at 3 T in patients with coronary artery disease.
Radiology 2008;247:57-63.
- 31 Kim D, Axel L. Multislice, dual-imaging sequence for increasing the dynamic range
of the contrast-enhanced blood signal and CNR of myocardial enhancement at 3T. J Magn
Reson Imaging 2006;23:81-6.
- 32 Isbell DC, Kramer CM. Magnetic resonance for the assessment of myocardial viability.
Curr Opin Cardiol 2006;21:469-72.
- 33 Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Judd RM, et al. The use of contrast-enhanced
magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J
Med 2000;343:1445-53.
- 34 Klumpp B, Fenchel M, Hoevelborn T, Helber U, Scheule A, Claussen C, et al. Assessment
of myocardial viability using delayed enhancement magnetic resonance imaging at 3.0
Tesla. Invest Radiol 2006;41:661-7.
- 35 Ligabue G, Fiocchi F, Ferraresi S, Barbieri A, Rossi R, Modena MG, et al. 3-Tesla
MRI for the evaluation of myocardial viability: A comparative study with 1.5-Tesla
MRI. Radiol Med 2008;113:347-62.
- 36 Huber A, Bauner K, Wintersperger BJ, Reeder SB, Stadie F, Mueller E, et al. Phase-sensitive
inversion recovery (PSIR) single-shot true FISP for assessment of myocardial infarction
at 3 Tesla. Invest Radiol 2006;41:148-53.
- 37 Bauner KU, Muehling O, Wintersperger BJ, Winnik E, Reiser MF, Huber A. Inversion
recovery single-shot Turbo FLASH for assessment of myocardial infarction at 3 Tesla.
Invest Radiol 2007;42:361-71.
- 38 Kellman P, Arai AE, Mcveigh ER, Aletras AH. Phase-sensitive inversion phase-sensitive
inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement.
Magn Reson Med 2002;383:372-83.
- 39 Biglands J, Radjenovic A, Ridgway J. Cardiovascular magnetic resonance physics for
clinicians: Part II. J Cardiovasc Magn Reson 2012;14:66.
- 40 Lotz J, Doker R, Noeske R, Felix R, Galanski M, Meyer GP, et al. In vitro validation
of phase-contrast flow measurements at 3 T in comparison to 1.5 T: Precision, accuracy,
and signal-to-noise ratios. J Magn Reson Imaging 2005;21:604-10.
- 41 Pai VM. Phase contrast using multiecho steady-state free precession. Magn Reson Med
2007;58:419-24.
- 42 Anderson LJ, Holden S, Davis B, Prescott E, Charrier CC, Bunce NH, et al. Cardiovascular
T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload.
Eur Heart J 2001;22:2171-9.
- 43 Anderson LJ, Westwood MA, Holden S, Davis B, Prescott E, Porter JB, et al. Myocardial
iron clearance during reversal of siderotic cardiomyopathy with intravenous desferrioxamine:
A prospective study using T2 ∗ cardiovascular magnetic resonance. Br J Haematol 2004;127:348-55.
- 44 Westwood MA, Anderson LJ, Firmin DN, Gatehouse PD, Lorenz CH, et al. Interscanner
reproducibility of cardiovascular magnetic resonance T2 ∗ measurements of tissue iron
in thalassemia. J Magn Reson Imaging 2003;18:616-20.
- 45 Abdel-Gadir A, Vorasettakarnkij Y, Ngamkasem H, Nordin S, Ako E, Tumkosit M, et al.
Ultrafast CMR to deliver high volume screening of an at risk thalassemia population
in the developing world: Preliminary results from the TIC-TOC study (Thailand and
UK international collaboration in thalassaemia using an optimised ultrafast CMR protocol).
J Cardiovasc Magn Reson 2016;18:39.
- 46 Storey P, Thompson A, Carqueville C, Wood J, de Freitas R, Rigsby C. R2* imaging
of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging
2007;25:540-7.
- 47 He T, Kirk P, Firmin DN, Lam WM, Chu WC, Au WY, et al. Multi-center transferability
of a breath-hold T2 technique for myocardial iron assessment. J Cardiovasc Magn Reson
2008;10:11.
- 48 Alam MH, Auger D, McGill LA, Smith GC, Wage R, Drivas P, et al. Comparison of 3 T
and 1.5 T for T2* magnetic resonance of tissue iron. J Cardiovasc Magn Reson 2016;18.
- 49 Shellock FG. Biomedical implants and devices: Assessment of magnetic field interactions
with a 3.0-Tesla MR system. J Magn Reson Imaging 2002;16:721-32.