Hamostaseologie 2014; 34(02): 167-173
DOI: 10.5482/HAMO-13-08-0043
Review
Schattauer GmbH

F8 genetic analysis strategies when standard approaches fail

Genanalytische Strategien für F8 bei Versagen der Standardverfahren
B. Pezeshkpoor
1   Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
,
A. Pavlova
1   Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
,
J. Oldenburg
1   Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
,
O. El-Maarri
1   Institute of Experimental Haematology and Transfusion Medicine, University of Bonn, Germany
› Author Affiliations
This work was supported by a DFG grant (EL499/2–1), a Baxter bioscience grant (H12–000820) and a Bayer Haemophilia Awards Program.
Further Information

Publication History

received: 19 August 2013

accepted in revised form: 25 November 2013

Publication Date:
28 December 2017 (online)

Summary

Haemophilia A is a common X-linked recessive disorder caused by mutations in F8 leading to deficiency or dysfunction of coagulant factor VIII (FVIII). Despite tremendous improvements in mutation screening methods, in a small group of patients with FVIII deficiency suffering from haemophilia A, no DNA change can be found. In these patients, analysis reveals no causal mutations even after sequencing the whole coding region of F8 including the flanking splice sites, as well as the promoter and the 3’ untranslated region (UTR). After excluding the mutations mimicking the haemophilia A phenotype in interacting partners of the FVIII protein affecting the half life and transport of the protein, mutations or rearrangements in non-coding regions of F8 have to be considered responsible for the haemophilia A phenotype.

In this review, we present the experiences with molecular diagnosis of such cases and approaches to be applied for mutation negative patients.

Zusammenfassung

Hämophilie A, eine häufige, X-chromosomal rezessiv vererbte Erkrankung, verursacht einen Mangel oder eine Dysfunktion des Blutgerinnungsfaktors VIII (FVIII). Trotz großer Fortschritte in Mutationsscreeningverfahren kann bei einer kleinen Gruppe von Patienten, die unter einem Hämophilie-A-ähnlichen Phänotyp leiden, keine genetische Veränderung im F8 nachgewiesen werden. Nach Sequenzierung der gesamten kodierenden F8-Region einschließlich flankierender Spleißstellen, Promotorbereich und 3’-UTR Region kann in diesen Fällen keine ursächliche Mutation nachgewiesen werden. Nach Ausschluss von Mutationen in Genen der Interaktionspartner des FVIII-Proteins, die Halbwertszeit und Transport beeinflussen, sollte nach der Ursache für den Hämophilie-A-ähnlichen Phänotyp in nicht-kodierenden F8-Bereichen untersucht werden.

In dieser Übersicht fassen wir Erfahrungen in der Diagnostik solcher Fälle zusammen und stellen neben molekulargenetischen Mechanismen, die zur Ausprägung eines solchen Phänotyps führen, eine gestaffelte genetischen Untersuchung im Rahmen der Diagnostik vor.

 
  • References

  • 1 Mannucci PM, Tuddenham EG. The haemophilias--from royal genes to gene therapy. N Engl J Med 2001; 344: 1773-1779.
  • 2 Antonarakis SE. Molecular genetics of coagulation factor VIII gene and haemophilia A. Thromb Haemost 1995; 74: 322-328.
  • 3 Pavlova A, Brondke H, Musebeck J. et al. Molecular mechanisms underlying haemophilia A phenotype in seven females. J Thromb Haemost 2009; 07: 976-982.
  • 4 Martin-Salces M, Vencesla A, Alvarez-Roman MT. et al. Clinical and genetic findings in five female patients with haemophilia A: Identification of a novel missense mutation, p.Phe2127Ser. Thromb Haemost 2010; 104: 718-723.
  • 5 Nair PS, Shetty S, Ghosh K. A homozygous female haemophilia A. Indian J Hum Genet 2012; 18: 134-136.
  • 6 Miesbach W, Alesci S, Geisen C, Oldenburg J. Association between phenotype and genotype in carriers of haemophilia A. Haemophilia 2011; 17: 246-251.
  • 7 Bicocchi MP, Migeon BR, Pasino M. et al. Familial nonrandom inactivation linked to the X inactivation centre in heterozygotes manifesting haemophilia A. Eur J Hum Genet 2005; 13: 635-640.
  • 8 Knobe KE, Sjorin E, Soller MJ. et al. Female haemophilia A caused by skewed X inactivation. Haemophilia 2008; 14: 846-848.
  • 9 Schwaab R, Oldenburg J, Higuchi M. et al. Haemophilia A: carrier detection by DNA analysis. Blut 1988; 57: 85-90.
  • 10 Schwaab R, Oldenburg J, Brackmann HH, Hanfland P. Haemophilia A: molecular biology and carrier diagnosis. Infusionsther Transfusionsmed 1994; 21: 116-125.
  • 11 Schwaab R, Ludwig M, Oldenburg J. et al. Identical point mutations in the factor VIII gene that have different clinical manifestations of haemophilia A. Am J Hum Genet 1990; 47: 743-754.
  • 12 Schwaab R, Oldenburg J, Tuddenham EG. et al. Mutations in haemophilia A. Br J Haematol 1993; 83: 450-458.
  • 13 Schwaab R, Oldenburg J, Schwaab U. et al. Characterization of mutations within the factor VIII gene of 73 unrelated mild and moderate haemophiliacs. Br J Haematol 1995; 91: 458-464.
  • 14 Becker J, Schwaab R, Moller-Taube A. et al. Characterization of the factor VIII defect in 147 patients with sporadic haemophilia A: family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am J Hum Genet 1996; 58: 657-670.
  • 15 Oldenburg J, Grimm T, Becker J. et al. Mutations in severe haemophilia A: distribution within the factor VIII gene, origin and influence on inhibitor development. Beitr Infusionsther Transfusionsmed 1997; 34: 224-230.
  • 16 Oldenburg J, Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia 2006; 12 (Suppl. 06) 15-22.
  • 17 Gouw SC, van den Berg HM, Oldenburg J. et al. F8 gene mutation type and inhibitor development in patients with severe haemophilia A: systematic review and meta-analysis. Blood 2012; 119: 2922-2934.
  • 18 Bagnall RD, Waseem N, Green PM, Giannelli F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe haemophilia A. Blood 2002; 99: 168-174.
  • 19 Naylor JA, Green PM, Rizza CR, Giannelli F. Analysis of factor VIII mRNA reveals defects in everyone of 28 haemophilia A patients. Hum Mol Genet 1993; 02: 11-17.
  • 20 Lakich D, Kazazian Jr HH, Antonarakis SE, Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet 1993; 05: 236-241.
  • 21 Higuchi M, Antonarakis SE, Kasch L. et al. Molecular characterization of mild-to-moderate haemophilia A: detection of the mutation in 25 of 29 patients by denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA 1991; 88: 8307-8311.
  • 22 Oldenburg J, Schroder J, Schmitt C. et al. Small deletion/insertion mutations within poly-A runs of the factor VIII gene mitigate the severe haemophilia A phenotype. Thromb Haemost 1998; 79: 452-453.
  • 23 Oldenburg J, El-Maarri O. New insight into the molecular basis of haemophilia A. Int J Hematol 2006; 83: 96-102.
  • 24 Piedras J, Sanchez-Montero PE, Herrera FM. et al. Effect of plasma freezing temperature, anticoagulant and time of storage on factor VIII:C activity in cryoprecipitate. Arch Med Res 1993; 24: 23-26.
  • 25 Pavlova A, Delev D, Pahl S. et al. Molecular genetic background of haemophilia A patients with discrepancy between one-stage and two-stage factor VIII assays. Hamostaseologie 2010; 30 (Suppl. 01) S153-S155.
  • 26 Bowyer AE, van Veen JJ, Goodeve A. et al. Specific and global coagulation assays in the diagnosis of discrepant mild haemophilia A. Haematologica. 2013 DOI: 10.3324/haematol.2013.088088.
  • 27 Rost S, Loffler S, Pavlova A. et al. Detection of large duplications within the factor VIII gene by MLPA. J Thromb Haemost 2008; 06: 1996-1999.
  • 28 Zimmermann MA, Oldenburg J, Muller CR, Rost S. Characterization of duplication breakpoints in the factor VIII gene. J Thromb Haemost 2010; 08: 2696-2704.
  • 29 Uen C, Oldenburg J, Schroder J. et al. 2% Haemophilia A patients without mutation in the FVIII gene. Hämostaseologie 2003; 23: 1-5.
  • 30 El-Maarri O, Herbiniaux U, Graw J. et al. Analysis of mRNA in haemophilia A patients with undetectable mutations reveals normal splicing in the factor VIII gene. J Thromb Haemost 2005; 03: 332-339.
  • 31 Zhang B, Cunningham MA, Nichols WC. et al. Bleeding due to disruption of a cargo-specific ERto-Golgi transport complex. Nat Genet 2003; 34: 220-225.
  • 32 Zhang B, McGee B, Yamaoka JS. et al. Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 2006; 107: 1903-1907.
  • 33 Castaman G, Federici AB, Rodeghiero F, Mannucci PM. Von Willebrand’s disease in the year 2003: towards the complete identification of gene defects for correct diagnosis and treatment. Haematologica 2003; 88: 94-108.
  • 34 Eikenboom JC, Castaman G, Kamphuisen PW. et al. The factor VIII/von Willebrand factor ratio discriminates between reduced synthesis and increased clearance of von Willebrand factor. Thromb Haemost 2002; 87: 252-257.
  • 35 Federici AB. The factor VIII/von Willebrand factor complex: basic and clinical issues. Haematologica 2003; 88: EREP02.
  • 36 Nichols WC, Seligsohn U, Zivelin A. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 1998; 93: 61-70.
  • 37 Schneppenheim R, Budde U, Krey S. et al. Results of a screening for von Willebrand disease type 2N in patients with suspected haemophilia A or von Willebrand disease type 1. Thromb Haemost 1996; 76: 598-602.
  • 38 Spreafico M, Peyvandi F. Combined FV and FVIII deficiency. Haemophilia 2008; 14: 1201-1208.
  • 39 Keeney S, Bowen D, Cumming A. et al. The molecular analysis of von Willebrand disease: a guideline from the UK Haemophilia Centre Doctors’ Organisation Haemophilia Genetics Laboratory Network. Haemophilia 2008; 14: 1099-1111.
  • 40 Viel KR, Machiah DK, Warren DM. et al. A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 2007; 109: 3713-3724.
  • 41 Green D, Ruth KJ, Folsom AR, Liu K. Hemostatic factors in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Arterioscler Thromb 1994; 14: 686-693.
  • 42 McCallum CJ, Peake IR, Newcombe RG, Bloom AL. Factor VIII levels and blood group antigens. Thromb Haemost 1983; 50: 757.
  • 43 Smith NL, Chen MH, Dehghan A. et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation 2010; 121: 1382-1392.
  • 44 Antoni G, Oudot-Mellakh T, Dimitromanolakis A. et al. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med Genet 2011; 12: 102.
  • 45 Hallden C, Knobe KE, Sjorin E. et al. Investigation of disease-associated factors in haemophilia A patients without detectable mutations. Haemophilia 2012; 18: e132-e137.
  • 46 Pezeshkpoor B, Zimmer N, Marquardt N. et al. Deep intronic ‘mutations’ cause haemophilia A: application of next generation sequencing in patients without detectable mutation in F8 cDNA. J Thromb Haemost 2013; 11: 1679-1687.
  • 47 Sheen CR, Jewell UR, Morris CM. et al. Double complex mutations involving F8 and FUNDC2 caused by distinct break-induced replication. Hum Mutat 2007; 28: 1198-1206.
  • 48 Van de Water N, Williams R, Ockelford P, Browett P. A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 1998; 79: 938-942.
  • 49 Tavassoli K, Eigel A, Horst J. A deletion/insertion leading to the generation of a direct repeat as a result of slipped mispairing and intragenic recombination in the factor VIII gene. Hum Genet 1999; 104: 435-437.
  • 50 Castaman G, Giacomelli SH, Mancuso ME. et al. Deep intronic variations may cause mild haemophilia A. J Thromb Haemost 2011; 09: 1541-1548.
  • 51 Vidal F, Farssac E, Tusell J. et al. First molecular characterization of an unequal homologous alumediated recombination event responsible for haemophilia. Thromb Haemost 2002; 88: 12-16.
  • 52 Pezeshkpoor B, Rost S, Oldenburg J, El-Maarri O. Identification of a third rearrangement at Xq28 that causes severe haemophilia A as a result of homologous recombination between inverted repeats. J Thromb Haemost 2012; 10: 1600-1608.
  • 53 Schroder W, Poetsch M, Gazda H. et al. A de novo translocation 46,X,t(X;15) causing haemophilia B in a girl: a case report. Br J Haematol 1998; 100: 750-757.
  • 54 Krepischi-Santos AC, Carneiro JD, Svartman M. et al. Deletion of the factor IX gene as a result of translocation t(X;1) in a girl affected by haemophilia B. Br J Haematol 2001; 113: 616-620.
  • 55 Di Paola J, Goldman T, Qian Q. et al. Breakpoint of a balanced translocation (X:14) (q27.1;q32.3) in a girl with severe haemophilia B maps proximal to the factor IX gene. J Thromb Haemost 2004; 02: 437-440.
  • 56 Kearney L. Molecular cytogenetics. Best Pract Res Clin Haematol 2001; 14: 645-669.
  • 57 Pinkel D, Segraves R, Sudar D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207-211.
  • 58 Aradhya S, Manning MA, Splendore A, Cherry AM. Whole-genome array-CGH identifies novel contiguous gene deletions and duplications associated with developmental delay, mental retardation, and dysmorphic features. Am J Med Genet A 2007; 143A: 1431-1441.
  • 59 Evangelidou P, Alexandrou A, Moutafi M. et al. Implementation of high resolution whole genome array CGH in the prenatal clinical setting: advantages, challenges, and review of the literature. Biomed Res Int 2013; 2013: 346762.
  • 60 Rost S, Aumann V, Nanda I. et al. Mild haemophilia A in a female patient with a large X-chromosomal deletion and a missense mutation in the F8 gene – a case report. Haemophilia 2013; 19: e310-e313.
  • 61 Giardino D, Corti C, Ballarati L. et al. De novo balanced chromosome rearrangements in prenatal diagnosis. Prenat Diagn 2009; 29: 257-265.
  • 62 Acquila M, Pasino M, Di Duca M. et al. MLPA assay in F8 gene mutation screening. Haemophilia 2008; 14: 625-627.
  • 63 Rossetti LC, Radic CP, Larripa IB, De Brasi CD. Genotyping the haemophilia inversion hotspot by use of inverse PCR. Clin Chem 2005; 51: 1154-1158.
  • 64 Rossetti LC, Radic CP, Larripa IB, De Brasi CD. Developing a new generation of tests for genotyping haemophilia-causative rearrangements involving int22h and int1h hotspots in the factor VIII gene. J Thromb Haemost 2008; 06: 830-836.
  • 65 Dehainault C, Michaux D, Pages-Berhouet S. et al. A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation. Eur J Hum Genet 2007; 15: 473-477.
  • 66 Anczukow O, Buisson M, Leone M. et al. BRCA2 deep intronic mutation causing activation of a cryptic exon: opening toward a new preventive therapeutic strategy. Clin Cancer Res 2012; 18: 4903-4909.
  • 67 Vache C, Besnard T, le Berre P. et al. Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy. Hum Mutat 2012; 33: 104-108.
  • 68 El-Maarri O, Singer H, Klein C. et al. Lack of F8 mRNA: a novel mechanism leading to haemophilia A. Blood 2006; 107: 2759-2765.
  • 69 Castaman G, Giacomelli SH, Mancuso ME. et al. F8 mRNA studies in haemophilia A patients with different splice site mutations. Haemophilia 2010; 16: 786-790.
  • 70 Zimmermann MA, Gehrig A, Oldenburg J. et al. Analysis of F8 mRNA in haemophilia A patients with silent mutations or presumptive splice site mutations. Haemophilia 2013; 19: 310-317.
  • 71 Inaba H, Koyama T, Shinozawa K. et al. Identification and characterization of an adenine to guanine transition within intron 10 of the factor VIII gene as a causative mutation in a patient with mild haemophilia A. Haemophilia 2012; 19: 100-105.
  • 72 Holbrook JA, Neu-Yilik G, Hentze MW, Kulozik AE. Nonsense-mediated decay approaches the clinic. Nat Genet 2004; 36: 801-808.
  • 73 Bagnall RD, Waseem NH, Green PM. et al. Creation of a novel donor splice site in intron 1 of the factor VIII gene leads to activation of a 191 bp cryptic exon in two haemophilia A patients. Br J Haematol 1999; 107: 766-771.
  • 74 Bakker E, Van Broeckhoven C, Bonten EJ. et al. Germline mosaicism and Duchenne muscular dystrophy mutations. Nature 1987; 329: 554-556.
  • 75 Higuchi M, Kochhan L, Olek K. A somatic mosaic for haemophilia A detected at the DNA level. Mol Biol Med 1988; 05: 23-27.
  • 76 Maddalena A, Sosnoski DM, Berry GT, Nussbaum RL. Mosaicism for an intragenic deletion in a boy with mild ornithine transcarbamylase deficiency. N Engl J Med 1988; 319: 999-1003.
  • 77 Oldenburg J, Rost S, El-Maarri O. et al. De novo factor VIII gene intron 22 inversion in a female carrier presents as a somatic mosaicism. Blood 2000; 96: 2905-2906.
  • 78 Leuer M, Oldenburg J, Lavergne JM. et al. Somatic mosaicism in haemophilia A: a fairly common event. Am J Hum Genet 2001; 69: 75-87.
  • 79 Lenting PJ, VANS CJ, Denis CV. Clearance mechanisms of von Willebrand factor and factor VIII. J Thromb Haemost 2007; 05: 1353-1360.
  • 80 Rydz N, Swystun LL, Notley C. et al. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013; 121: 5228-5237.
  • 81 Li XG, Liu DP, Liang CC. Beyond the locus control region: new light on beta-globin locus regulation. Int J Biochem Cell Biol 2001; 33: 914-923.