Hamostaseologie 2016; 36(03): 168-177
DOI: 10.5482/HAMO-14-09-0046
Review
Schattauer GmbH

RhoGAPs und Rho-GTPasen in Thrombozyten

RhoGAPs and Rho GTPases in platelets
Margitta Elvers
1   Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University, Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

received: 25 September 2014

accepted in revised form: 13 January 2015

Publication Date:
20 December 2017 (online)

Zusammenfassung

Die Reorganisation des Zytoskeletts in Thrombozyten ist essenziell für die Thrombozytenadhäsion und Thrombusbildung in Hämostase und Thrombose. Die Rho-GTPasen RhoA, Rac1 und Cdc42 spielen eine entscheidende Rolle bei der Reorganisation des Zytoskeletts, indem sie die Bildung von Filopodien und Lamellipodien induzieren und somit für die Oberflächenvergrößerung der Thrombozyten wäh-rend der Aktivierung verantwortlich sind. Rho-GTPasen beeinflussen zudem die Prozesse der Thrombozytenaktivität und Aggregatbildung durch Modulation der Sekretion, Integrinaktivierung und arteriellen Thrombusbildung. Die Aktivität der Rho-GTPasen wird von verschiedenen Proteinen kontrolliert, z. B. den GTPase aktivierenden Proteinen (GTPase activating proteins, GAPs). GAPs lösen die Inaktivierung des Guaninnukleotidbindenden Proteins durch Stimulierung der GTPase-Aktivität aus. Die Rolle und Bedeutung von GAPs in Thrombozyten ist nur wenig verstanden und viele der bekannten Rho-GAPs sind bisher nicht in Thrombozyten identifiziert oder hinsichtlich ihrer Funktion charakterisiert worden. Die kürzlich entdeckten RhoGAPs Oligophrenin1 (OPHN1) und Nadrin regulieren die Aktivität von RhoA, Rac1 und Cdc42 und nachfolgend die Reorganisation des Zytoskeletts und die Aktivierung von Thrombozyten sowie die Thrombusbildung. In den letzten Jahren trug die Analyse gene-tisch-modifizierter Mäuse dazu bei, grundlegende Erkenntnisse zur Bedeutung von RhoGTPasen und ihren Regulatoren für die Reorganisation des Zytoskeletts und andere Rhovermittelte zelluläre Prozesse in Thrombozyten zu gewinnen.

Summary

Platelet cytoskeletal reorganization is essential for platelet adhesion and thrombus formation in hemostasis and thrombosis. The Rho GTPases RhoA, Rac1 and Cdc42 are the main players in cytoskeletal dynamics of platelets responsible for the formation of filopodia and lamellipodia to strongly increase the platelet surface upon activation. They are involved in platelet activation and aggregate formation including platelet secretion, inte-grin activation and arterial thrombus formation. The activity of Rho GTPases is tightly controlled by different proteins such as GTPase-activating proteins (GAPs). GAPs stimulate GTP hydrolysis to terminate Rho signaling. The role and impact of GAPs in platelets is not well-defined and many of the RhoGAPs identified are not known to be present in platelets or to have any function in platelets. The recently identified RhoGAPs Oligophrenin1 (OPHN1) and Nadrin regulate the activity of RhoA, Rac1 and Cdc42 and subsequent platelet cytoskeletal reorganization, platelet activation and thrombus formation. In the last years, the analysis of genetically modified mice helped to gain the understanding of Rho GTPases and their regulators in cytoskeletal rearrangements and other Rho mediated cellular processes in platelets.

 
  • References

  • 1 Ruggeri ZM. Platelets in atherothrombosis.. Nat Med 2002; 8: 1227-1234.
  • 2 Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study.. Lancet 1997; 349: 1269-1276.
  • 3 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow.. Cell 1998; 94: 657-666.
  • 4 Varga-Szabo D, Braun A, Kleinschnitz C. et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction.. J Exp Med 2008; 205: 1583-1591.
  • 5 Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation.. J Thromb Haemost 2009; 7: 206-209.
  • 6 Aslan JE, McCarty OJ. Rho GTPases in platelet function.. J Thromb Haemost 2013; 11: 35-46.
  • 7 Fox JE. Regulation of platelet function by the cytoskeleton.. Adv Exp Med Biol 1993; 344: 175-185.
  • 8 Jaffe AB, Hall A. Rho GTPases: Biochemistry and biology.. Annu Rev Cell Dev Biol 2005; 21: 247-269.
  • 9 Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies.. Nat Rev Mol Cell Biol 2008; 9: 690-701.
  • 10 Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour.. Nat Rev Mol Cell Biol 2003; 4: 446-456.
  • 11 Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility.. Exp Cell Res 2004; 301: 43-49.
  • 12 Pertz O, Hodgson L, Klemke RL, Hahn KM. Spatiotemporal dynamics of RhoA activity in migrating cells.. Nature 2006; 440: 1069-1072.
  • 13 Machacek M, Hodgson L, Welch C. et al. Coordination of Rho GTPase activities during cell protrusion.. Nature 2009; 461: 99-103.
  • 14 Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals.. Annu Rev Cell Dev Biol 2003; 19: 91-118.
  • 15 Weernink PA, Meletiadis K, Hommeltenberg S. et al. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42.. J Biol Chem 2004; 279: 7840-7849.
  • 16 Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1.. Science 1995; 269: 1270-1272.
  • 17 Rosenblatt J, Cramer LP, Baum B, McGee KM. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly.. Cell 2004; 117: 361-372.
  • 18 Glotzer M. Animal cell cytokinesis.. Annu Rev Cell Dev Biol 2001; 17: 351-386.
  • 19 Zhong C, Kinch MS, Burridge K. Rho-stimulated contractility contributes to the fibroblastic pheno-type of Ras-transformed epithelial cells.. Mol Biol Cell 1997; 8: 2329-2344.
  • 20 Worthylake RA, Burridge K. RhoA and ROCK promote migration by limiting membrane protrusions.. J Biol Chem 2003; 278: 13578-13584.
  • 21 Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology.. Circ Res 2006; 98: 322-334.
  • 22 Miyamoto S, Del Re DP, Xiang SY. et al. Revisited and revised: Is RhoA always a villain in cardiac pathophysiology?. J Cardiovasc Transl Res 2010; 3: 330-343.
  • 23 Etienne-Manneville S, Hall A. Rho GTPases in cell biology.. Nature 2002; 420: 629-635.
  • 24 Houssa B, de Widt J, Kranenburg O. et al. Diacylglycerol kinase theta binds to and is negatively regulated by active RhoA.. J Biol Chem 1999; 274: 6820-6822.
  • 25 Illenberger D, Schwald F, Pimmer D. et al. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1.. EMBO J 1998; 17: 6241-6249.
  • 26 Takeya R, Sumimoto H. Molecular mechanism for activation of superoxide-producing NADPH oxidases.. Mol Cells 2003; 16: 271-277.
  • 27 Koh CG. Rho GTPases and their regulators in neuronal functions and development.. Neurosignals 2006; 15: 228-237.
  • 28 Hall AB, Gakidis MA, Glogauer M. et al. Requirements for Vav guanine nucleotide exchange factors and Rho GTPases in FcgammaR- and complement-mediated phagocytosis.. Immunity 2006; 24: 305-316.
  • 29 Nobes CD, Hall A. Rho, Rac, and Cdc42 Gtpases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia.. Cell 1995; 81: 53-62.
  • 30 Dash D, Aepfelbacher M, Siess W. Integrin alpha IIb beta 3-mediated translocation of CDC42Hs to the cytoskeleton in stimulated human platelets.. J Biol Chem 1995; 270: 17321-17326.
  • 31 Morii N, Teru-uchi T, Tominaga T. et al. A rho gene product in human blood platelets.. II. Effects of the ADP-ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol Chem 1992; 267: 20921-20926.
  • 32 Nemoto Y, Namba T, Teru-uchi T. et al. A rho gene product in human blood platelets.. I. Identification of the platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein. J Biol Chem 1992; 267: 20916-20920.
  • 33 Klages B, Brandt U, Simon MI. et al. Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets.. J Cell Biol 1999; 144: 745-754.
  • 34 McCarty OJ, Larson MK, Auger JM. et al. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow.. J Biol Chem 2005; 280: 39474-39484.
  • 35 Miranti CK, Leng L, Maschberger P. et al. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1.. Curr Biol 1998; 8: 1289-1299.
  • 36 Offermanns S. Activation of platelet function through G protein-coupled receptors.. Circ Res 2006; 99: 1293-1304.
  • 37 Pleines I, Eckly A, Elvers M. et al. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets.. Blood 2010; 115: 3364-3373.
  • 38 Pleines I, Elvers M, Strehl A. et al. Rac1 is essential for phospholipase C-gamma2 activation in platelets.. Pflugers Arch 2009; 457: 1173-1185.
  • 39 Pleines I, Hagedorn I, Gupta S. et al. Megakaryocyte-specific RhoA deficiency causes macro-thrombocytopenia and defective platelet activation in hemostasis and thrombosis.. Blood 2012; 119: 1054-1063.
  • 40 Zhang J, King WG, Dillon S. et al. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho.. J Biol Chem 1993; 268: 22251-22254.
  • 41 Gao G, Chen L, Dong B. et al. RhoA effector mDia1 is required for PI 3-kinase-dependent actin remodeling and spreading by thrombin in platelets.. Biochem Biophys Res Commun 2009; 385: 439-444.
  • 42 Gratacap MP, Payrastre B, Nieswandt B, Offer-manns S. Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides.. J Biol Chem 2001; 276: 47906-47913.
  • 43 Moers A, Nieswandt B, Massberg S. et al. G13 is an essential mediator of platelet activation in hemostasis and thrombosis.. Nat Med 2003; 9: 1418-1422.
  • 44 Suzuki Y, Yamamoto M, Wada H. et al. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase.. Blood 1999; 93: 3408-3417.
  • 45 Leng L, Kashiwagi H, Ren XD, Shattil SJ. RhoA and the function of platelet integrin alphaIIbbeta3.. Blood 1998; 91: 4206-4215.
  • 46 Schoenwaelder SM, Hughan SC, Boniface K. et al. RhoA sustains integrin alpha(IIb)beta(3) adhesion contacts under high shear.. J Biol Chem 2002; 277: 14738-14746.
  • 47 Arthur WT, Petch LA, Burridge K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism.. Curr Biol 2000; 10: 719-722.
  • 48 Flevaris P, Stojanovic A, Gong H. et al. A molecular switch that controls cell spreading and retraction.. J Cell Biol 2007; 179: 553-565.
  • 49 Gong H, Shen B, Flevaris P. et al. G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin „outside-in“ signaling.. Science 2010; 327: 340-343.
  • 50 Hartwig JH, Bokoch GM, Carpenter CL. et al. Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets.. Cell 1995; 82: 643-653.
  • 51 Soulet C, Gendreau S, Missy K. et al. Characterisation of Rac activation in thrombin- and collagen-stimulated human blood platelets.. FEBS Lett 2001; 507: 253-258.
  • 52 Piechulek T, Rehlen T, Walliser C. et al. Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases.. J Biol Chem 2005; 280: 38923-38931.
  • 53 Delaney MK, Liu J, Zheng Y. et al. The role of Rac1 in glycoprotein Ib-IX-mediated signal transduction and integrin activation.. Arterioscler Thromb Vasc Biol 2012; 32: 2761-2768.
  • 54 Stefanini L, Boulaftali Y, Ouellette TD. et al. Rap1-Rac1 circuits potentiate platelet activation.. Arterioscler Thromb Vasc Biol 2012; 32: 434-441.
  • 55 Polakis PG, Evans T, Snyderman R. Multiple chromatographic forms of the formylpeptide chemoattractant receptor and their relationship to GTP-binding proteins.. Biochem Biophys Res Commun 1989; 161: 276-283.
  • 56 Polakis PG, Snyderman R, Evans T. Characterization of G25K, a GTP-binding protein containing a novel putative nucleotide binding domain.. Biochem Biophys Res Commun 1989; 160: 25-32.
  • 57 Azim AC, Barkalow K, Chou J, Hartwig JH. Activation of the small GTPases, rac and cdc42, after ligation of the platelet PAR-1 receptor.. Blood 2000; 95: 959-964.
  • 58 Akbar H, Shang X, Perveen R. et al. Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation.. PloS One 2011; 6: e22117.
  • 59 Czuchra A, Wu X, Meyer H. et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells.. Mol Biol Cell 2005; 16: 4473-4484.
  • 60 Goh WI, Sudhaharan T, Lim KB. et al. Rif-mDia1 interaction is involved in filopodium formation independent of Cdc42 and Rac effectors.. J Biol Chem 2011; 286: 13681-13694.
  • 61 Bialkowska K, Zaffran Y, Meyer SC, Fox JE. 14–3–3 zeta mediates integrin-induced activation of Cdc42 and Rac.. Platelet glycoprotein Ib-IX regulates inte-grin-induced signaling by sequestering 14–3–3 zeta. J Biol Chem 2003; 278: 33342-33350.
  • 62 Goggs R, Harper MT, Pope RJ. et al. RhoG protein regulates platelet granule secretion and thrombus formation in mice.. J Biol Chem 2013; 288: 34217-34229.
  • 63 Kim S, Dangelmaier C, Bhavanasi D. et al. RhoG protein regulates glycoprotein VI-Fc receptor gamma-chain complex-mediated platelet activation and thrombus formation.. J Biol Chem 2013; 288: 34230-34238.
  • 64 Goggs R, Savage JS, Mellor H, Poole AW. The small GTPase Rif is dispensable for platelet filopodia generation in mice.. PloS One 2013; 8: e54663.
  • 65 Garcia-Mata R, Boulter E, Burridge K. The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs.. Nat Rev Mol Cell Biol 2011; 12: 493-504.
  • 66 Pan JY, Wessling-Resnick M. GEF-mediated GDP/ GTP exchange by monomeric GTPases: a regulatory role for Mg2+?. Bioessays 1998; 20: 516-521.
  • 67 Rossman KL, Sondek J. Larger than DbI: new structural insights into RhoA activation.. Trends Biochem Sci 2005; 30: 163-165.
  • 68 Boguski MS, McCormick F. Proteins regulating Ras and its relatives.. Nature 1993; 366: 643-654.
  • 69 Scheffzek K, Ahmadian M. GTPase activating proteins: structural and functional insights 18 years after discovery.. Cell Mol Life Sci 2005; 62: 3014-3038.
  • 70 Scheffzek K, Ahmadian MR, Wittinghofer A. GTPase-activating proteins: helping hands to complement an active site.. Trends Biochem Sci 1998; 23: 257-262.
  • 71 Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins.. Biol Cell 2007; 99: 67-86.
  • 72 Hart MJ, Shinjo K, Hall A. et al. Identification of the human platelet GTPase activating protein for the CDC42Hs protein.. J Biol Chem 1991; 266: 20840-20848.
  • 73 Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in inte-grin-mediated cell adhesion, spreading, and retraction.. Curr Opin Cell Biol 2012; 24: 600-606.
  • 74 Huveneers S, Danen EH. Adhesion signaling – crosstalk between integrins, Src and Rho.. J Cell Sci 2009; 122: 1059-1069.
  • 75 Briggs MW, Sacks DB. IQGAP proteins are integral components of cytoskeletal regulation.. EMBO Rep 2003; 4: 571-574.
  • 76 Beck S, Fotinos A, Gawaz M, Elvers M. Nadrin GAP activity is isoform- and target-specific regulated by tyrosine phosphorylation.. Cell Signal 2014; 26: 1975-1984.
  • 77 Beck S, Fotinos A, Lang F. et al. Isoform-specific roles of the GTPase activating protein nadrin in cytoskeletal reorganization of platelets.. Cell Signal 2013; 25: 236-246.
  • 78 Billuart P, Bienvenu T, Ronce N. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation.. Nature 1998; 392: 923-926.
  • 79 Bleijerveld OB, van Holten TC, Preisinger C. et al. Targeted phosphotyrosine profiling of glycoprotein VI signaling implicates oligophrenin-1 in platelet filopodia formation.. Arterioscler Thromb Vasc Biol 2013; 33: 1538-1543.
  • 80 Eberth A, Lundmark R, Gremer L. et al. A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family.. Biochem J 2009; 417: 371-377.
  • 81 Elvers M, Beck S, Fotinos A. et al. The GRAF family member oligophrenin1 is a RhoGAP with BAR domain and regulates Rho GTPases in platelets.. Cardiovasc Res 2012; 94: 526-536.
  • 82 Fauchereau F, Herbrand U, Chafey P. et al. The RhoGAP activity of OPHN1, a new F-actin-binding protein, is negatively controlled by its amino-terminal domain.. Mol Cell Neurosci 2003; 23: 574-586.
  • 83 Furuta B, Harada A, Kobayashi Y. et al. Identification and functional characterization of nadrin variants, a novel family of GTPase activating protein for rho GTPases.. J Neurochem 2002; 82: 1018-1028.
  • 84 Harada A, Furuta B, Takeuchi K. et al. Nadrin, a novel neuron-specific GTPase-activating protein involved in regulated exocytosis.. J Biol Chem 2000; 275: 36885-36891.
  • 85 Fotinos A, Gowert NS, Klier M. et al. Loss of Oligophrenin1 leads to uncontrolled Rho activation and increased thrombus formation in mice.. J Thromb Haemost. 2014 doi: 10.1111/jth.12834.