Planta Med 2018; 84(12/13): 971-975
DOI: 10.1055/a-0632-2249
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

In Vivo Use of 1D and 2D 1H NMR to Examine the Glycosylation of Scopoletin in Duboisia myoporoides Cell Suspensions[*]

Ophélie Fliniaux
1   BIOPI – EA3900, Université de Picardie Jules Verne, Amiens, France
,
Albrecht Roscher
2   GEC – UMR CNRS 7075, Université de Picardie Jules Verne, Amiens, France
,
Dominique Cailleu
3   PFA, Université de Picardie Jules Verne, Amiens, France
,
François Mesnard
1   BIOPI – EA3900, Université de Picardie Jules Verne, Amiens, France
› Author Affiliations
Further Information

Publication History

received 17 February 2018
revised 13 May 2018

accepted 16 May 2018

Publication Date:
14 June 2018 (online)

Abstract

Cell suspensions initiated from Duboisia myoporoides–a shrub belonging to the Solanaceae family and being a rich source of tropane alkaloids–previously showed their ability to glycosylate scopoletin into scopolin, which represent coumarins showing health benefits. To investigate the time course of this glycosylation reaction, an in vivo NMR approach was developed using a perfusion system in an 8-mm NMR tube and 1H NMR with 1D and 2D (TOCSY and NOESY) experiments. The time course of metabolic changes could therefore be followed without any labeling.

* Dedicated to Professor Dr. Robert Verpoorte in recognition of his outstanding contribution to natural products research.


 
  • References

  • 1 Osmani SA, Bak S, Møller BL. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 2009; 70: 325-347
  • 2 Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, Gonzalez-Fernandez-Ninno SM, Erbert B, Yang F, Christiansen KM, Hansen SF, Stonebloom S, Adams PD, Ronald PC, Hillson NJ, Hadi MZ, Vega-Sanchez ME, Loque D, Dcheller HV, Heazlewood JL. The plant glycosyltransferase clone collection for functional genomics. Plant J 2014; 79: 517-529
  • 3 Gachon CMM, Langlois-Meurinne M, Saindrenan P. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 2005; 10: 542-549
  • 4 De Bruyn F, Maertens J, Beauprez J, Soetaert W, De Mey M. Biotechnological advances in UDP-sugar based glycosylation of small molecules. Biotechnol Adv 2015; 33: 288-302
  • 5 Sucha L, Tomsik P. The steroidal glycoalkaloids from Solanaceae: toxic effect, antitumour activity and mechanism of action. Planta Med 2016; 82: 379-387
  • 6 Rivas F, Parra A, Martinez A, Garcia-Granados A. Enzymatic glycosylation of terpernoids. Phytochem Rev 2013; 12: 327-339
  • 7 Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 2016; 7: 735
  • 8 Moore CW. Constitution of scopoletin. Proc Chem Soc 1911; 27: 119
  • 9 Best RJ. Fluorescent substances in plants. III. Distribution of scopoletin in tobacco plants and some hypotheses on its part in metabolism. Aust J Exp Biol Med Sci 1948; 26: 223-230
  • 10 Andreae SR, Andreae WA. The metabolism of scopoletin by healthy and virus-infected potato tubers. Can J Res C Bot Sci 1949; 27 C: 15-22
  • 11 Betry P, Fliniaux MA, Mackova M, Gillet F, Macek T, Jacquin-Dubreuil A. Scopoletin-glucosyltransferase activity from Duboisia myoporoides; improvement of cultivation conditions and crude extract preparation procedure. J Plant Physiol 1995; 146: 503-507
  • 12 Kai K, Shimizu BI, Mizutani M, Watanabe K, Sakata K. Accumulation of coumarins in Arabidopsis thaliana . Phytochemistry 2006; 67: 379-386
  • 13 Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, Shimizu BI. Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana . Plant J 2008; 55: 989-999
  • 14 Fourcroy P, Siso-Terraza P, Sudre D, Saviron M, Reyt G, Gaymard F, Abadia A, Abadia J, Alvarez-Fernandez A, Briat JF. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol 2014; 201: 155-167
  • 15 Siwinska J, Kadzinski L, Banasiuk R, Gwizdek-Wisniewska A, Olry A, Banecki B, Lojkowska E, Ihnatowixz A. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana . BMC Plant Biol 2014; 14: 280
  • 16 Ziegler J, Schmidt S, Chutia R, Mueller J, Boettcher C, Strehmel N, Scheel D, Abel S. Non-targeted profiling of semi-polar metabolites in Arabidopsis root exudates uncovers a role for coumarin secretion and lignification during the local response to phosphate limitation. J Exp Bot 2016; 67: 1421-1432
  • 17 Hino F, Okazaki M, Miura Y. Effect of 2, 4-dichlorophenoxyacetic acid on glycosylation of scopoletin to scopolin in tobacco tissue culture. Plant Physiol 1982; 69: 810-813
  • 18 Jeandet P, Courot E, Clement C, Ricord S, Crouzet J, Aziz A, Cordelier S. Molecular engineering of phytoalexins in plants: benefits and limitations for food and agriculture. J Agric Food Chem 2017; 65: 2643-2644
  • 19 Bednarek P, Schneider B, Svatos A, Oldham NJ, Hahlbrock K. Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiol 2005; 138: 1058-1070
  • 20 Tal B, Robeson DJ. The metabolism of sunflower phytoalexins ayapin and scopoletin: plant-fungus interactions. Plant Physiol 1986; 82: 167-172
  • 21 Sun H, Wang L, Hettenhausen C, Cao G, Sun G, Wu J, Wu J, Zhang B, Ma J. Scopoletin is a phytoalexin against Alternaria alternata in wild tobacco dependent on jasmonate signalling. J Exp Bot 2014; 65: 4305-4315
  • 22 Shimizu BI, Miyagawa H, Ueno T, Sakata K, Watanabe K, Ogawa K. Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum . Z Naturforsch C 2005; 60: 83-90
  • 23 Yong XJ, Zhang YQ, Ding W. Repellent and oviposition deterrent properties of scopoletin to Tetranychus cinnabarinus . Yingyong Kunchong Xueba 2012; 49: 422-427
  • 24 Gnonlonfin GJB, Sanni A, Brimer L. Review scopoletin – a coumarin phytoalexin with medicinal properties. CRC Crit Rev Plant Sci 2012; 31: 47-56
  • 25 Shah MR, Shamim A, White LS, Bertino MF, Mesaik MA, Soomro S. The anti-inflammatory properties of Au-scopoletin nanoconjugates. New J Chem 2014; 38: 5566-5572
  • 26 Cheng AS, Cheng YH, Chang TL. Scopoletin attenuates allergy by inhibiting Th2 cytokines production in EL-4 T cells. Food Funct 2012; 3: 886-890
  • 27 Basu M, Mayana K, Xavier S, Balachandran S, Mishra N. Effect of scopoletin on monoamine oxidases and brain amines. Neurochem Int 2016; 93: 113-117
  • 28 Pan R, Dai Y, Gao X, Xia Y. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis. Int Immunopharmacol 2009; 9: 859-869
  • 29 Kano Y, Konoshima M. Pharmacological properties of glenic preparation. III. Effect of scopolin and scopoletin on intestinal hyoscyamine absorption. Shoyakugaku Zasshi 1978; 32: 53-58
  • 30 Clarke DD, Baines PS. Host control of scopolin accumulation in infected potato tissue. Physiol Plant Pathol 1976; 9: 199-203
  • 31 Ratcliffe RG, Roscher A, Shachar-Hill Y. Plant NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 2001; 39: 267-300
  • 32 Krishnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 2005; 56: 255-265
  • 33 Schneider B. Nuclear magnetic resonance spectroscopy in biosynthetic studies. Prog Nucl Magn Reson Spectrosc 2007; 51: 155-198
  • 34 Roscher A, Troufflard S, Taghki AI. In vivo NMR for 13C metabolic flux analysis. Methods Mol Biol 2014; 1090: 143-152
  • 35 Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P. Plant metabolism as studied by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 2017; 102 – 103: 61-97
  • 36 Fan TWM. Metabilite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 1996; 28: 161-219
  • 37 Fox GG, Ratcliffe RG. 31P NMR observations on the effect of the external pH on the intracellular pH values in plant cell suspension cultures. Plant Physiol 1990; 93: 512-521
  • 38 Schroeder C, Lutterbach R, Stöckigt J. Preparative biosynthesis of natural glucosides and fluorogenic substrates for β-glucosidases followed by in vivo 13C NMR with high density plant cell cultures. Tetrahedron 1996; 52: 925-934
  • 39 Schroeder C, Sommer J, Humpfer E, Stöckigt J. Inverse correlated 1H-13C in vivo NMR as a probe to follow the metabolism of unlabeled vanillin by plant cell cultures. Tetrahedron 1997; 53: 927-934
  • 40 Troufflard S, Roscher A, Thomasset B, Rawsthorne S, Portais JC. In vivo 13C-NMR determines metabolic fluxes and steady state in linseed embryos. Phytochemistry 2007; 68: 2341-2350
  • 41 Fliniaux MA, Gillet-Manceau F, Marty D, Macek T, Monti JP, Jacquin-Dubreuil A. Evaluation of the relation between the endogenous scopoletin and scopolin level of some solanaceous and papaver cell suspensions and their ability to bioconvert scopoletin to scopolin. Plant Sci 1997; 123: 205-210