Klin Padiatr 2018; 230(06): 305-313
DOI: 10.1055/a-0637-9653
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Molecular Diagnostics in Pediatric Brain Tumors: Impact on Diagnosis and Clinical Decision-Making — A Selected Case Series

Molekulare Diagnostik pädiatrischer Hirntumore: Einfluss auf Diagnose und klinische Entscheidungen – eine ausgewählte Fallserie
Heidi Bächli
1   Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
,
Jonas Ecker
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
4   Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Cornelis van Tilburg
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
,
Dominik Sturm
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Florian Selt
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
4   Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Felix Sahm
6   Department of Neuropathology, Heidelberg, Heidelberg University Hospital, Germany
7   Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, German
,
Christian Koelsche
6   Department of Neuropathology, Heidelberg, Heidelberg University Hospital, Germany
7   Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, German
,
Kerstin Grund
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
8   Department of Human Genetics, Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
,
Christian Sutter
8   Department of Human Genetics, Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
,
Torsten Pietsch
9   Institute of Neuropathology, University of Bonn, Bonn, Germany
,
Hendrik Witt
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Christel Herold-Mende
1   Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
,
Andreas von Deimling
6   Department of Neuropathology, Heidelberg, Heidelberg University Hospital, Germany
7   Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, German
,
David Jones
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Stefan Pfister
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
5   Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Olaf Witt
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
4   Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
,
Till Milde
2   KiTZ Clinical Trial Unit (ZIPO), Hopp-Kindertumorzentrum am NCT Heidelberg (KiTZ), Heidelberg, Germany
3   Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
4   Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
11 July 2018 (online)

Abstract

Central nervous system (CNS) tumors account for the highest mortality among pediatric malignancies. Accurate diagnosis is essential for optimal clinical management. The increasing use of molecular diagnostics has opened up novel possibilities for more precise classification of CNS tumors. We here report a single-institutional collection of pediatric CNS tumor cases that underwent a refinement or a change of diagnosis after completion of molecular analysis that affected clinical decision-making including the application of molecularly informed targeted therapies. 13 pediatric CNS tumors were analyzed by conventional histology, immunohistochemistry, and molecular diagnostics including DNA methylation profiling in 12 cases, DNA sequencing in 8 cases and RNA sequencing in 3 cases. 3 tumors had a refinement of diagnosis upon molecular testing, and 6 tumors underwent a change of diagnosis. Targeted therapy was initiated in 5 cases. An underlying cancer predisposition syndrome was detected in 5 cases. Although this case series, retrospective and not population based, has its limitations, insight can be gained regarding precision of diagnosis and clinical management of the patients in selected cases. Accuracy of diagnosis was improved in the cases presented here by the addition of molecular diagnostics, impacting clinical management of affected patients, both in the first-line as well as in the follow-up setting. This additional information may support the clinical decision making in the treatment of challenging pediatric CNS tumors. Prospective testing of the clinical value of molecular diagnostics is currently underway.

Zusammenfassung

Die höchsten Mortalitätsraten pädiatrischer Krebserkrankungen sind durch Tumore des zentralen Nervensystems (ZNS) bedingt. Eine präzise Diagnose ist essentiell für eine optimale Behandlung. Durch die zunehmende Verwendung molekularer Diagnostik ergeben sich neue Möglichkeiten der präzisen Klassifizierung von ZNS-Tumoren. Hier berichten wir über eine Fallserie pädiatrischer ZNS-Tumore, deren Diagnose durch molekulare Diagnostik präzisiert oder geändert wurde, mit Einfluss auf die klinische Entscheidungsfindung bis hin zur Anwendung molekular informierter Therapien. Es wurden 13 pädiatrische ZNS Tumore mittels konventioneller Histologie, Immunhistochemie und molekularer Diagnostik analysiert, inklusive DNA-Methylierungsprofil in 12 Fällen, DNA-Sequenzierung in acht Fällen und RNA-Sequenzierung in 3 Fällen. Nach erfolgten molekularen Analysen wurde bei 3 Tumoren die Diagnose präzisiert und bei 6 Tumoren die Diagnose geändert. Eine gezielte Therapie wurde in 5 Fällen eingeleitet. Ein zugrundeliegendes Tumorprädispositionssyndrom wurde in 5 Fällen detektiert. Da diese Fallserie retrospektiver Natur und nicht bevölkerungsbezogen ist, ist die Aussagekraft insgesamt limitiert. Dennoch können wertvolle Einsichten bezüglich präziser Diagnosestellung und daraus folgendem klinischen Management in Einzelfällen gewonnen werden. Die Genauigkeit der Diagnose wurde in den hier vorgestellten Fällen verbessert, mit Einfluss auf das klinische Management der betroffenen Patienten bei Initialtherapie als auch in der Nachsorge. Diese zusätzliche Information kann die klinische Entscheidungsfindung in der Behandlung komplexer pädiatrischer ZNS Tumore unterstützen. Der klinische Nutzen molekularer Diagnostik wird aktuell in Studien geprüft.

 
  • References

  • 1 Abraham NS, Gossey JT, Davila JA. et al. Receipt of recommended therapy by patients with advanced colorectal cancer. Am J Gastroenterol 2006; 101: 1320-1328
  • 2 Chmielecki J, Bailey M, He J. et al. Genomic Profiling of a Large Set of Diverse Pediatric Cancers Identifies Known and Novel Mutations across Tumor Spectra. Cancer research 2017; 77: 509-519
  • 3 Church AJ, Calicchio ML, Nardi V. et al. Recurrent EML4-NTRK3 fusions in infantile fibrosarcoma and congenital mesoblastic nephroma suggest a revised testing strategy. Mod Pathol 2017; 10.1038/modpathol.2017.127: 463-473
  • 4 Ellison DW, Kocak M, Figarella-Branger D. et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed 2011; 10: 1-13
  • 5 Evans D, Farndon P. Nevoid Basal Cell Carcinoma Syndrome. Seattle (WA): University of Washington, Seattle; 1993. 2017, Adam MP, Ardinger HH, Pagon RA, et al., 2002 Jun 20 [Updated 2015 Oct 1] https://www.ncbi.nlm.nih.gov/books/NBK1151/
  • 6 Gajjar A, Bowers DC, Karajannis MA. et al. Pediatric Brain Tumors: Innovative Genomic Information Is Transforming the Diagnostic and Clinical Landscape. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2015; 33: 2986-2998
  • 7 Gibson P, Tong Y, Robinson G. et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010; 468: 1095-1099
  • 8 Hovestadt V, Remke M, Kool M. et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta neuropathologica 2013; 125: 913-916
  • 9 International Cancer Genome Consortium PedBrain Tumor P . Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 2016; 22: 1314-1320
  • 10 Johann PD, Erkek S, Zapatka M. et al. A typical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer cell 2016; 29: 379-393
  • 11 Kaatsch P, Grabow D, Spix C. German Childhood Cancer Registry – Annual Report 2016 (1980–2015), Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz; 1–148
  • 12 Look Hong NJ, Gagliardi AR, Bronskill SE. et al. Multidisciplinary cancer conferences: exploring obstacles and facilitators to their implementation. J Oncol Pract 2010; 6: 61-68
  • 13 Louis DN, Perry A, Reifenberger G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica 2016; 131: 803-820
  • 14 Lutterbach J, Pagenstecher A, Spreer J. et al. The brain tumor board: lessons to be learned from an interdisciplinary conference. Onkologie 2005; 28: 22-26
  • 15 Northcott PA, Jones DT, Kool M. et al. Medulloblastomics: the end of the beginning. Nature reviews Cancer 2012; 12: 818-834
  • 16 Northcott PA, Pfister SM, Jones DTW. Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. The Lancet Oncology 2015; 16: e293-e302
  • 17 Packer RJ, Pfister S, Bouffet E. et al. Pediatric low-grade gliomas: implications of the biologic era. Neuro-oncology 2017; 19: 750-761
  • 18 Petrucelli N, Daly M, Pal T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. Seattle (WA): University of Washington, Seattle; 1993. 2017., Adam MP, Ardinger HH, Pagon RA, et al., editors., 1998 Sep 4 [Updated 2016 Dec 15] https://www.ncbi.nlm.nih.gov/books/NBK1247/
  • 19 Ramkissoon SH, Bandopadhayay P, Hwang J. et al. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-oncology 2017; 19: 986-996
  • 20 Ripperger T, Bielack SS, Borkhardt A. et al. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173: 1017-1037
  • 21 Sahm F, Schrimpf D, Jones DT. et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta neuropathologica 2016; 131: 903-910
  • 22 Schittenhelm J. Recent advances in subtyping tumors of the central nervous system using molecular data. Expert Rev Mol Diagn 2017; 17: 83-94
  • 23 Selt F, Deiss A, Korshunov A. et al. Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain pathology 2016; 26: 506-516
  • 24 Sturm D, Jones DTW, Sahm F et al. Tb-11 molecular Neuropathology 2.0 - Increasing Diagnostic Accuracy in Pediatric Neurooncology. Neuro-oncology 2016; 18: iii170
  • 25 Sturm D, Orr BA, Toprak UH. et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016; 164: 1060-1072
  • 26 Sturm D, Witt H, Hovestadt V. et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer cell 2012; 22: 425-437
  • 27 Tannenbaum-Dvir S, Glade Bender JL, Church AJ. et al. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma. Cold Spring Harb Mol Case Stud 2015; 1: a000471
  • 28 Villani A, Shore A, Wasserman JD. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. The Lancet Oncology 2016; 17: 1295-1305
  • 29 Villani A, Tabori U, Schiffman J. et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. The Lancet Oncology 2011; 12: 559-567
  • 30 Worst BC, van Tilburg CM, Balasubramanian GP. et al. Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study. Eur J Cancer 2016; 65: 91-101