AkupunkturPraxis 2022; 3(04): 207-217
DOI: 10.1055/a-1854-7008
Grundlagen

Vegetative Innervation des Abdomens: Immunsystem, Schmerz, Mikrobiom

Timm J. Filler
,
Sara V. Schnettler
,
Michael Wolf-Vollenbröker

Das vegetative Nervensystem hält für die Bauchorgane mit dem Parasympathikus und dem Sympathikus 2 zentrale und für das Darmrohr zusätzlich mit dem Auerbach- und Meissner-Plexus 2 periphere Versorgungseinheiten bereit. Die beiden Letzteren werden als enterisches Nervensystem zusammengefasst, das autonom den Darm steuern kann. Diese Steuerung ist vom Mikrobiom des Darms abhängig und für zahlreiche Pathologien grundlegend. Die beiden extrinsischen Einheiten kontrollieren auch das Abwehrsystem der Bauchorgane, deren Immunzellen für den direkten Kontakt mit Aktivität modulierenden Rezeptoren ausgestattet sind. Eine weitere wichtige Rolle der vegetativen Innervation liegt in der Nozizeption, die als wesentlicher Regulator für Entzündungen weit mehr als nur ein Alarmsystem ist. Bei der Nozizeption gibt es keine klare Trennung von der Propriozeption.



Publication History

Article published online:
16 November 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Dyachuk V. et al. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 2014; 345: 82-87
  • 2 Thayer JF, Sternberg EM.. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun 2010; 24: 1223-1228
  • 3 Karemaker JM.. An introduction into autonomic nervous function. Physiol Meas 2017; 38: R89-R118
  • 4 Spencer NJ, Hu H.. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat Rev Gastroenterol Hepatol 2020; 17: 338-351
  • 5 Schabadasch A.. Intramurale Nervengeflechte des Darmrohrs. Zeitschrift für Zellforschung und Mikroskopische Anatomie 1930; 10: 320
  • 6 Bellinger DL. et al. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252: 27-56
  • 7 Hornby PJ. et al. Medullary raphe: a new site for vagally mediated stimulation of gastric motility in cats. Am J Physiol 1990; 258: G637-G647
  • 8 Dutta SK. et al. Parkinson's Disease: The Emerging Role of Gut Dysbiosis, Antibiotics, Probiotics, and Fecal Microbiota Transplantation. J Neurogastroenterol Motil 2019; 25: 363-376
  • 9 Leclair-Visonneau L. et al. The gut in Parkinson's disease: Bottom-up, top-down, or neither?. Neurogastroenterol Motil 2020; 32: e13777
  • 10 Reyes-Farias M. et al. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192: 114723
  • 11 Mogilevski T. et al. Review article: the role of the autonomic nervous system in the pathogenesis and therapy of IBD. Aliment Pharmacol Ther 2019; 50: 720-737
  • 12 Populin L, Stebbing MJ, Furness JB.. Neuronal regulation of the gut immune system and neuromodulation for treating inflammatory bowel disease. FASEB Bioadv 2021; 3: 953-966
  • 13 Bonaz B. et al. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil 2013; 25: 208-221
  • 14 Furness JB. et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71
  • 15 Maier SF. et al. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci 1998; 840: 289-300
  • 16 Nance DM, Sanders VM.. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 2007; 21: 736-745
  • 17 Borovikova LV. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405: 458-462
  • 18 Go YY. et al. Different Transcutaneous Auricular Vagus Nerve Stimulation Parameters Modulate the Anti-Inflammatory Effects on Lipopolysaccharide-induced Acute Inflammation in Mice. Biomedicines 2022; 10: 247-261
  • 19 Brierley SM.. Gut nociceptors: sentinels promoting host defense. Cell Res 2020; 30: 279-280
  • 20 Humenick A. et al. Activation of intestinal spinal afferent endings by changes in intra-mesenteric arterial pressure. J Physiol 2015; 593: 3693-3709
  • 21 Meixiong J. et al. Nociceptor-Mast Cell Sensory Clusters as Regulators of Skin Homeostasis. Trends Neurosci 2020; 43: 130-132
  • 22 Fang Y. et al. Cutaneous Hypersensitivity as an Indicator of Visceral Inflammation via C-Nociceptor Axon Bifurcation. Neurosci Bull 2021; 37: 45-54
  • 23 Ren X. et al. Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. Am J Physiol Heart Circ Physiol 2019; 316: H543-H553
  • 24 Moore DM, Rizzolo D.. Sandifer syndrome. JAAPA 2018; 31: 18-22
  • 25 Cawthon CR, de La Serre CB.. Gut bacteria interaction with vagal afferents. Brain Res. 2018; 1693 (Pt B) 134-139
  • 26 Vales S, Touvron M, Van Landeghem L.. Enteric glia: Diversity or plasticity?. Brain Res 2018; 1693 (Pt B) 140-145
  • 27 Heiss CN, Olofsson LE.. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol 2019; 31: e12684
  • 28 Joly A, Leulier F, De Vadder F.. Microbial Modulation of the Development and Physiology of the Enteric Nervous System. Trends Microbiol 2021; 29: 686-699
  • 29 Gonkowski S, Gajecka M, Makowska K.. Mycotoxins and the Enteric Nervous System. Toxins 2020; 12: 461-489
  • 30 Brehmer A, Rupprecht H, Neuhuber W.. Two submucosal nerve plexus in human intestines. Histochem Cell Biol 2010; 133: 149-161
  • 31 Hoyle CH, Burnstock G.. Neuronal populations in the submucous plexus of the human colon. J Anat 1989; 166: 7-22
  • 32 Bernard C.. Lecture on the physiology of the heart and its connections with the brain, delivered at the Sorbonne, the 27th March 1865. Savannah: J.S. Morel; 1867;
  • 33 Porges SW.. Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology 1995; 32: 301-318
  • 34 Thayer JF, Lane RD.. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 2000; 61: 201-216
  • 35 Laborde S, Mosley E, Mertgen A.. Vagal Tank Theory: The Three Rs of Cardiac Vagal Control Functioning – Resting, Reactivity, and Recovery. Front Neurosci 2018; 12: 458
  • 36 Gottfried-Blackmore A, Habtezion A, Nguyen L.. Noninvasive vagal nerve stimulation for gastroenterology pain disorders. Pain Manag 2021; 11: 89-96
  • 37 Gholamrezaei A, Van Diest I, Aziz Q. et al. Effect of slow, deep breathing on visceral pain perception and its underlying psychophysiological mechanisms. Neurogastroenterol Motil 2022; 34: e14242
  • 38 Kolacz J, Porges SW.. Chronic Diffuse Pain and Functional Gastrointestinal Disorders After Traumatic Stress: Pathophysiology Through a Polyvagal Perspective. Front Med (Lausanne) 2018; 5: 145. Erratum in: Front Med (Lausanne) 2018; 15: 229