CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 286-305
DOI: 10.1055/a-1929-9789
Graphical Review

Transition-Metal-Catalyzed Remote C–H Bond Functionalization of Cyclic Amines

Weijie Chen
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
b   Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
,
Xiaoyu Yang
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
,
Xi Cao
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. of China
› Institutsangaben
Financial support from the National Natural Science Foundation of China (NSFC) (Grant no. 22101206) and the Fundamental Research Funds for the Central Universities (Grant no. 22120220087) is gratefully acknowledged.
 


Abstract

C–H bond functionalization is one of the most effective strategies for the rapid synthesis of cyclic amines containing substituents on the ring, which are core structures of many bioactive molecules. However, it is much more challenging to perform this strategy on remote C–H bonds compared to the α-C–H bonds of cyclic amines. This graphical review aims to provide a concise overview on transition-metal-catalyzed methods for the remote C–H bond functionalization of cyclic amines. Examples are categorized and demonstrated according to mechanistic pathways that initiate the reactions of cyclic amine substrates. Where relevant, selected substrate scope and detailed reaction mechanisms are given.


#

Biographical Sketches

Zoom Image

Weijie Chen studied chemistry at the University of Science­ and Technology of China (USTC) (B.S. 2010), and conducted undergraduate research in the group of Prof. Liu-Zhu Gong. He then undertook his graduate studies in the lab of Prof. Daniel Seidel at Rutgers University (USA), obtaining his Ph.D. in 2016. He subsequently worked as a postdoctoral fellow in the group of Prof. Michael Krische at the University of Texas at Austin (USA) from 2016 to 2017. He then moved to the University of Florida (USA) with the group of Prof. Daniel Seidel in the summer of 2017, and continued his postdoctoral research until 2020. He started his independent career at Tongji University (China) in 2021.

Zoom Image

Xiaoyu Yang studied chemistry at the University of Shanghai for Science and Technology (USST) (B.S. 2021). He then moved to Tongji University for his M.Sc. degree, working with Dr. Weijie Chen. His research focuses on the development of new synthetic methods toward nitrogen-containing compounds.

Zoom Image

Xi Cao studied chemistry at Hunan Normal University (B.S. 2021). She then moved to Tongji University for her Ph.D. studies, working with Dr. Weijie Chen. Her research focuses on the development of new synthetic methods toward nitrogen-containing compounds.

Cyclic amines are ubiquitous structures in natural products and pharmaceuticals, many of which contain one or multiple substituents on the ring at the α-position as well as at positions remote from the nitrogen atom. The development of new synthetic methods to access these substituted cyclic amines is thus of great importance. For this purpose, C–H bond functionalization of parent aza-heterocycles arguably represents the most direct and facile strategy among others, being particularly suitable for the late-stage modification of existing cyclic amine structures in complex molecules. Research in this field, however, has largely focused on the functionalization of α-C–H bonds, while functionalization of more remote C–H bonds, such as β- and γ-C–H bonds, is much less studied. This is due to challenges associated with remote C–H bond functionalization of cyclic amines. Firstly, a handful of such reactions are initiated via the lone pair of electrons on the amine nitrogen atom, which is further away from remote C–H bonds compared to the α-C–H bond. Secondly, reactions for the remote C–H bond functionalization of cyclic amines often involve labile endocyclic iminium ion and enamine intermediates, which are electrophiles and nucleophiles respectively in nature. This dramatically enhances the complexity of reaction pathways, and significantly increases the difficulty in controlling the selectivity of the target reaction. Thirdly, the conformations of cyclic compounds are not as flexible as those of acyclic compounds. As a result, strategies that are not uncommon for the remote C–H bond functionalization of acyclic amines are sometimes not feasible for cyclic amines. Despite the above challenges, significant progress has still been made in recent years toward the remote C–H bond functionalization of cyclic amines, with the majority of methods relying on transition-metal catalysis.

This graphical review summarizes the transition-metal-catalyzed methods developed to date for the purpose of C–H bond functionalization at remote positions of the rings of saturated cyclic amines, some of which involve concurrent α-C–H bond functionalization as well. Reactions are grouped according to the mechanistic pathway that initiates the reaction of the cyclic amine substrate, and full references are grouped by Figure number. Transition-metal-catalyzed reactions using prefunctionalized substrates, such as cross-coupling with halogenated cyclic amines and hydrofunctionalization of partially unsaturated aza-heterocycles, are outside the scope of this review, and are thus not discussed.

Zoom Image
Figure 1 Oxidation with metal tetroxides[1]
Zoom Image
Figure 2 Hydride abstraction from cyclic amines, part I[2]
Zoom Image
Figure 3 Hydride abstraction from cyclic amines, part II[3]
Zoom Image
Figure 4 Hydride abstraction from cyclic amines, part III[4]
Zoom Image
Figure 5 Single-electron transfer (SET) from cyclic amines, part I[5]
Zoom Image
Figure 6 Single-electron transfer (SET) from cyclic amines, part II[6]
Zoom Image
Figure 7 Single-electron transfer (SET) from cyclic amines, part III[7]
Zoom Image
Figure 8 Hydrogen atom transfer (HAT) from cyclic amines, part I[8]
Zoom Image
Figure 9 Hydrogen atom transfer (HAT) from cyclic amines, part II[9]
Zoom Image
Figure 10 Hydrogen atom transfer (HAT) from cyclic amines, part III[10]
Zoom Image
Figure 11 Directed α-C–H bond activation of cyclic amines, followed by β-hydride elimination, part I[11]
Zoom Image
Figure 12 Directed α-C–H bond activation of cyclic amines, followed by β-hydride elimination, part II[12]
Zoom Image
Figure 13 Directed β-C–H bond activation of cyclic amines[13]
Zoom Image
Figure 14 Directed γ- and more remote C–H bond activation of cyclic amines, part I[14]
Zoom Image
Figure 15 Directed γ- and more remote C–H bond activation of cyclic amines, part II[15]
Zoom Image
Figure 16 Undirected remote C–H bond activation of cyclic amines[16]

#

Conflict of Interest

The authors declare no conflict of interest.

  • References

    • 1a Perrone R, Bettoni G, Tortorella V. Synthesis 1976; 598
    • 1b Petride H, Drãghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2004; 2: 302
    • 1c Petride H, Drăghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2006; 4: 674
    • 1d Lancefield CS, Zhou L, Lébl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
    • 1e Fujii H, Ogawa R, Jinbo E, Tsumura S, Nemoto T, Nagase H. Synlett 2009; 2341
    • 1f Dutta S, Li B, Rickertson DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
    • 1g Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 1h Ye Z, Gettys KE, Dai M. Beilstein J. Org. Chem. 2016; 12: 702
    • 1i Antermite D, Bull JA. Synthesis 2019; 51: 3171
    • 1j Kapoor M, Singh A, Sharma K, Hsu MH. Adv. Synth. Catal. 2020; 362: 4513
    • 1k Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 1l Ohno S, Miyoshi M, Murai K, Arisawa M. Synthesis 2021; 53: 2947
    • 1m He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
    • 1n Caplin MJ, Foley DJ. Chem. Sci. 2021; 12: 4646
    • 2a Xia X.-F, Shu X.-Z, Ji K.-G, Yang Y.-F, Shaukat A, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2010; 75: 2893
    • 2b Anguille S, Brunet J.-J, Chu NC, Diallo O, Pages C, Vincendeau S. Organometallics 2006; 25: 2943
    • 2c He Y, Wang F, Zhang X, Fan X. Chem. Commun. 2017; 53: 4002
    • 2d He Y, Zheng Z, Liu Q, Zhang X, Fan X. Org. Lett. 2020; 22: 9053
    • 3a Sundararaju B, Tang Z, Achard M, Sharma GV. M, Toupet L, Bruneau C. Adv. Synth. Catal. 2010; 352: 3141
    • 3b Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 3c Sahli Z, Sundararaju B, Achard M, Bruneau C. Green. Chem. 2013; 15: 775
    • 3d Boudiar T, Sahli Z, Sundararaju B, Achard M, Kabouche Z, Doucet H, Bruneau C. J. Org. Chem. 2012; 77: 3674
    • 3e Murugesh V, Sahoo AR, Achard M, Sharma GV. M, Bruneau C, Suresh S. Adv. Synth. Catal. 2021; 363: 453
    • 3f Özdemir İ, Düşünceli SD, Kaloğlu N, Achard M, Bruneau C. J. Organomet. Chem. 2015; 799–800: 311
    • 3g Şahin Z, Gürbüz N, Özdemir İ, Şahin O, Büyükgüngör O, Achard M, Bruneau C. Organometallics 2015; 34: 2296
    • 3h Ulu ÖD, Gürbüz N, Özdemir İ. Tetrahedron 2018; 74: 645
    • 3i Kaloğlu N. Tetrahedron 2019; 75: 2265
    • 4a Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 4b Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 4c Tan Z, Jiang H, Zhang M. Org. Lett. 2016; 18: 3174
    • 4d Shimbayashi T, Fujita K. Tetrahedron 2020; 76: 130946
    • 4e Zhang Y, Wang J, Zhou F, Liu J. Catal. Sci. Technol. 2021; 11: 3990
    • 4f Bera A, Bera S, Banerjee D. Chem. Commun. 2021; 57: 13042
    • 4g Tan KC, He T, Chua YS, Chen P. J. Phys. Chem. C 2021; 125: 18553
    • 4h Tan Z, Jiang H, Zhang M. Chem. Commun. 2016; 52: 9359
    • 4i Maji M, Borthakur I, Srivastava S, Kundu S. J. Org. Chem. 2022; 87: 5603
    • 5a Huang Y.-Z, Zhou Q.-L. J. Org. Chem. 1987; 52: 3552
    • 5b Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
    • 5c Shi X, He Y, Zhang X, Fan X. Adv. Synth. Catal. 2018; 360: 261
    • 5d He Y, Yang J, Liu Q, Zhang X, Fan X. J. Org. Chem. 2020; 85: 15600
    • 6a Genovino J, Lütz S, Sames D, Touré BB. J. Am. Chem. Soc. 2013; 135: 12346
    • 6b Wang F, Zhang X, He Y, Fan X. Tetrahedron Lett. 2019; 60: 151155
    • 6c Zhou M.-J, Zhu S.-F, Zhou Q.-L. Chem. Commun. 2017; 53: 8770
    • 6d Shi X, Chen X, Wang M, Zhang X, Fan X. J. Org. Chem. 2018; 83: 6524
    • 6e Wang F, Zhang X, He Y, Fan X. J. Org. Chem. 2020; 85: 2220
    • 7a Muralirajan K, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 14787
    • 7b Wang F, Liu X, Wang L. Org. Biomol. Chem. 2021; 19: 6141
    • 7c Xu G.-Q, Xu J.-T, Feng Z.-T, Liang H, Wang Z.-Y, Qin Y, Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
    • 7d Jia Z, Yang Q, Zhang L, Luo S. ACS Catal. 2019; 9: 3589
    • 7e An X.-D, Yang S, Qiu B, Yang T.-T, Li X.-J, Xiao J. J. Org. Chem. 2020; 85: 9558
    • 8a Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
    • 8b Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 7290
    • 8c Yu W.-L, Ren Z.-G, Ma K.-X, Yang H.-Q, Yang J.-J, Zheng H, Wu W, Xu P.-F. Chem. Sci. 2022; 13: 7947
    • 8d Wang C, Azofra LM, Dam P, Sebek M, Steinfeldt N, Rabeah J, El-Sepelgy O. ACS Catal. 2022; 12: 8868
    • 9a Li G, Kates PA, Dilger AK, Cheng PT, Ewing WR, Groves JT. ACS Catal. 2019; 9: 9513
    • 9b Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
    • 9c Hering T, Slanina T, Hancock A, Wille U, König B. Chem. Commun. 2015; 51: 6568
    • 9d Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
    • 10a Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
    • 10b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 10c Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 10d Sarver PJ, Bissonnette NB, MacMillan DW. C. J. Am. Chem. Soc. 2021; 143: 9737
    • 11a Ishii Y, Chatani N, Kakiuchi F, Murai S. Organometallics 1997; 16: 3615
    • 11b Ishii Y, Chatani N, Kakiuchi F, Murai S. Tetrahedron Lett. 1997; 38: 7565
    • 11c Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
    • 11d Hung-Low F, Krogman JP, Tye JW, Bradley CA. Chem. Commun. 2012; 48: 368
    • 11e Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 11f Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 2: 2241
    • 11g Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882
    • 12a Bheeter CB, Jin R, Bera JK, Dixneuf PH, Doucet H. Adv. Synth. Catal. 2014; 356: 119
    • 12b Roque JB, Kuroda Y, Jurczyk J, Xu L.-P, Ham JS, Göttemann LT, Roberts CA, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 12c Xu L.-P, Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2020; 142: 21140
    • 13a Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 13b Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
    • 13c Feng R, Wang B, Liu Y, Liu Z, Zhang Y. Eur. J. Org. Chem. 2015; 142
    • 13d Zhu Q, Ji D, Liang T, Wang X, Xu Y. Org. Lett. 2015; 17: 3798
    • 13e Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 139
    • 13f Yu Q.-Y, Zhong H.-M, Sun W.-W, Zhang S.-J, Cao P, Dong X.-P, Qin H.-B, Liu J.-K, Wu B. Asian J. Org. Chem. 2016; 5: 608
    • 13g Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
    • 13h Hutskalova V, Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 4342
    • 13i Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2014; 16: 480
    • 13j Zhang S.-J, Sun W.-W, Cao P, Dong X.-P, Liu J.-K, Wu B. J. Org. Chem. 2016; 81: 956
    • 13k Mondal B, Roy B, Kazmaier U. J. Org. Chem. 2016; 81: 11646
    • 13l Zhang S.-J, Sun W.-W, Yu Q.-Y, Cao P, Dong X.-P, Wu B. Tetrahedron Lett. 2017; 58: 606
    • 13m Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
    • 13n Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738
    • 13o Steijvoort BF. V, Kaval N, Kulago AA, Maes BU. W. ACS Catal. 2016; 6: 4486
    • 13p O’Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl-Frank C, Geerdink D, Kaiser M, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 10737
    • 13q Biswas S, Van Steijvoort BF, Waeterschoot M, Bheemireddy NR, Evano G, Maes BU. W. Angew. Chem. Int. Ed. 2021; 60: 21988
    • 13r Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
    • 13s Xia G, Zhuang Z, Liu L.-Y, Schreiber SL, Melillo B, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 7783
    • 13t Piticari A.-S, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Adv. Synth. Catal. 2022; 364: 1488
    • 15a Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 15b Li Z, Dechantsreiter M, Dandapani S. J. Org. Chem. 2020; 85: 6747
    • 15c Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
    • 16a Fiori KW, Du Bois J. J. Am. Chem. Soc. 2007; 129: 562
    • 16b Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 16c Liu W, Babl T, Röther A, Reiser O, Davies HM. L. Chem. Eur. J. 2020; 26: 4236

Corresponding Author

Weijie Chen
Institute for Advanced Studies, Tongji University
1239 Siping Rd, Shanghai 200092
P. R. of China   

Publikationsverlauf

Eingereicht: 09. August 2022

Angenommen nach Revision: 23. August 2022

Accepted Manuscript online:
24. August 2022

Artikel online veröffentlicht:
24. Oktober 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

    • 1a Perrone R, Bettoni G, Tortorella V. Synthesis 1976; 598
    • 1b Petride H, Drãghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2004; 2: 302
    • 1c Petride H, Drăghici C, Florea C, Petride A. Cent. Eur. J. Chem. 2006; 4: 674
    • 1d Lancefield CS, Zhou L, Lébl T, Slawin AM. Z, Westwood NJ. Org. Lett. 2012; 14: 6166
    • 1e Fujii H, Ogawa R, Jinbo E, Tsumura S, Nemoto T, Nagase H. Synlett 2009; 2341
    • 1f Dutta S, Li B, Rickertson DR. L, Valles DA, Seidel D. SynOpen 2021; 5: 173
    • 1g Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 1h Ye Z, Gettys KE, Dai M. Beilstein J. Org. Chem. 2016; 12: 702
    • 1i Antermite D, Bull JA. Synthesis 2019; 51: 3171
    • 1j Kapoor M, Singh A, Sharma K, Hsu MH. Adv. Synth. Catal. 2020; 362: 4513
    • 1k Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613
    • 1l Ohno S, Miyoshi M, Murai K, Arisawa M. Synthesis 2021; 53: 2947
    • 1m He Y, Zheng Z, Yang J, Zhang X, Fan X. Org. Chem. Front. 2021; 8: 4582
    • 1n Caplin MJ, Foley DJ. Chem. Sci. 2021; 12: 4646
    • 2a Xia X.-F, Shu X.-Z, Ji K.-G, Yang Y.-F, Shaukat A, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2010; 75: 2893
    • 2b Anguille S, Brunet J.-J, Chu NC, Diallo O, Pages C, Vincendeau S. Organometallics 2006; 25: 2943
    • 2c He Y, Wang F, Zhang X, Fan X. Chem. Commun. 2017; 53: 4002
    • 2d He Y, Zheng Z, Liu Q, Zhang X, Fan X. Org. Lett. 2020; 22: 9053
    • 3a Sundararaju B, Tang Z, Achard M, Sharma GV. M, Toupet L, Bruneau C. Adv. Synth. Catal. 2010; 352: 3141
    • 3b Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 3c Sahli Z, Sundararaju B, Achard M, Bruneau C. Green. Chem. 2013; 15: 775
    • 3d Boudiar T, Sahli Z, Sundararaju B, Achard M, Kabouche Z, Doucet H, Bruneau C. J. Org. Chem. 2012; 77: 3674
    • 3e Murugesh V, Sahoo AR, Achard M, Sharma GV. M, Bruneau C, Suresh S. Adv. Synth. Catal. 2021; 363: 453
    • 3f Özdemir İ, Düşünceli SD, Kaloğlu N, Achard M, Bruneau C. J. Organomet. Chem. 2015; 799–800: 311
    • 3g Şahin Z, Gürbüz N, Özdemir İ, Şahin O, Büyükgüngör O, Achard M, Bruneau C. Organometallics 2015; 34: 2296
    • 3h Ulu ÖD, Gürbüz N, Özdemir İ. Tetrahedron 2018; 74: 645
    • 3i Kaloğlu N. Tetrahedron 2019; 75: 2265
    • 4a Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 4b Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 4c Tan Z, Jiang H, Zhang M. Org. Lett. 2016; 18: 3174
    • 4d Shimbayashi T, Fujita K. Tetrahedron 2020; 76: 130946
    • 4e Zhang Y, Wang J, Zhou F, Liu J. Catal. Sci. Technol. 2021; 11: 3990
    • 4f Bera A, Bera S, Banerjee D. Chem. Commun. 2021; 57: 13042
    • 4g Tan KC, He T, Chua YS, Chen P. J. Phys. Chem. C 2021; 125: 18553
    • 4h Tan Z, Jiang H, Zhang M. Chem. Commun. 2016; 52: 9359
    • 4i Maji M, Borthakur I, Srivastava S, Kundu S. J. Org. Chem. 2022; 87: 5603
    • 5a Huang Y.-Z, Zhou Q.-L. J. Org. Chem. 1987; 52: 3552
    • 5b Takasu N, Oisaki K, Kanai M. Org. Lett. 2013; 15: 1918
    • 5c Shi X, He Y, Zhang X, Fan X. Adv. Synth. Catal. 2018; 360: 261
    • 5d He Y, Yang J, Liu Q, Zhang X, Fan X. J. Org. Chem. 2020; 85: 15600
    • 6a Genovino J, Lütz S, Sames D, Touré BB. J. Am. Chem. Soc. 2013; 135: 12346
    • 6b Wang F, Zhang X, He Y, Fan X. Tetrahedron Lett. 2019; 60: 151155
    • 6c Zhou M.-J, Zhu S.-F, Zhou Q.-L. Chem. Commun. 2017; 53: 8770
    • 6d Shi X, Chen X, Wang M, Zhang X, Fan X. J. Org. Chem. 2018; 83: 6524
    • 6e Wang F, Zhang X, He Y, Fan X. J. Org. Chem. 2020; 85: 2220
    • 7a Muralirajan K, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 14787
    • 7b Wang F, Liu X, Wang L. Org. Biomol. Chem. 2021; 19: 6141
    • 7c Xu G.-Q, Xu J.-T, Feng Z.-T, Liang H, Wang Z.-Y, Qin Y, Xu P.-F. Angew. Chem. Int. Ed. 2018; 57: 5110
    • 7d Jia Z, Yang Q, Zhang L, Luo S. ACS Catal. 2019; 9: 3589
    • 7e An X.-D, Yang S, Qiu B, Yang T.-T, Li X.-J, Xiao J. J. Org. Chem. 2020; 85: 9558
    • 8a Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2018; 140: 2465
    • 8b Huang L, Bismuto A, Rath SA, Trapp N, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 7290
    • 8c Yu W.-L, Ren Z.-G, Ma K.-X, Yang H.-Q, Yang J.-J, Zheng H, Wu W, Xu P.-F. Chem. Sci. 2022; 13: 7947
    • 8d Wang C, Azofra LM, Dam P, Sebek M, Steinfeldt N, Rabeah J, El-Sepelgy O. ACS Catal. 2022; 12: 8868
    • 9a Li G, Kates PA, Dilger AK, Cheng PT, Ewing WR, Groves JT. ACS Catal. 2019; 9: 9513
    • 9b Holmberg-Douglas N, Choi Y, Aquila B, Huynh H, Nicewicz DA. ACS Catal. 2021; 11: 3153
    • 9c Hering T, Slanina T, Hancock A, Wille U, König B. Chem. Commun. 2015; 51: 6568
    • 9d Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
    • 10a Schultz DM, Lévesque F, DiRocco DA, Reibarkh M, Ji Y, Joyce LA, Dropinski JF, Sheng H, Sherry BD, Davies IW. Angew. Chem. Int. Ed. 2017; 56: 15274
    • 10b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 10c Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 10d Sarver PJ, Bissonnette NB, MacMillan DW. C. J. Am. Chem. Soc. 2021; 143: 9737
    • 11a Ishii Y, Chatani N, Kakiuchi F, Murai S. Organometallics 1997; 16: 3615
    • 11b Ishii Y, Chatani N, Kakiuchi F, Murai S. Tetrahedron Lett. 1997; 38: 7565
    • 11c Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
    • 11d Hung-Low F, Krogman JP, Tye JW, Bradley CA. Chem. Commun. 2012; 48: 368
    • 11e Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 11f Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 2: 2241
    • 11g Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882
    • 12a Bheeter CB, Jin R, Bera JK, Dixneuf PH, Doucet H. Adv. Synth. Catal. 2014; 356: 119
    • 12b Roque JB, Kuroda Y, Jurczyk J, Xu L.-P, Ham JS, Göttemann LT, Roberts CA, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 12c Xu L.-P, Roque JB, Sarpong R, Musaev DG. J. Am. Chem. Soc. 2020; 142: 21140
    • 13a Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
    • 13b Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
    • 13c Feng R, Wang B, Liu Y, Liu Z, Zhang Y. Eur. J. Org. Chem. 2015; 142
    • 13d Zhu Q, Ji D, Liang T, Wang X, Xu Y. Org. Lett. 2015; 17: 3798
    • 13e Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 139
    • 13f Yu Q.-Y, Zhong H.-M, Sun W.-W, Zhang S.-J, Cao P, Dong X.-P, Qin H.-B, Liu J.-K, Wu B. Asian J. Org. Chem. 2016; 5: 608
    • 13g Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
    • 13h Hutskalova V, Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 4342
    • 13i Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2014; 16: 480
    • 13j Zhang S.-J, Sun W.-W, Cao P, Dong X.-P, Liu J.-K, Wu B. J. Org. Chem. 2016; 81: 956
    • 13k Mondal B, Roy B, Kazmaier U. J. Org. Chem. 2016; 81: 11646
    • 13l Zhang S.-J, Sun W.-W, Yu Q.-Y, Cao P, Dong X.-P, Wu B. Tetrahedron Lett. 2017; 58: 606
    • 13m Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
    • 13n Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738
    • 13o Steijvoort BF. V, Kaval N, Kulago AA, Maes BU. W. ACS Catal. 2016; 6: 4486
    • 13p O’Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl-Frank C, Geerdink D, Kaiser M, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 10737
    • 13q Biswas S, Van Steijvoort BF, Waeterschoot M, Bheemireddy NR, Evano G, Maes BU. W. Angew. Chem. Int. Ed. 2021; 60: 21988
    • 13r Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
    • 13s Xia G, Zhuang Z, Liu L.-Y, Schreiber SL, Melillo B, Yu J.-Q. Angew. Chem. Int. Ed. 2020; 59: 7783
    • 13t Piticari A.-S, Antermite D, Higham JI, Moore JH, Webster MP, Bull JA. Adv. Synth. Catal. 2022; 364: 1488
    • 15a Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599
    • 15b Li Z, Dechantsreiter M, Dandapani S. J. Org. Chem. 2020; 85: 6747
    • 15c Aguilera EY, Sanford MS. Angew. Chem. Int. Ed. 2021; 60: 11227
    • 16a Fiori KW, Du Bois J. J. Am. Chem. Soc. 2007; 129: 562
    • 16b Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 16c Liu W, Babl T, Röther A, Reiser O, Davies HM. L. Chem. Eur. J. 2020; 26: 4236

Zoom Image
Zoom Image
Zoom Image
Zoom Image
Figure 1 Oxidation with metal tetroxides[1]
Zoom Image
Figure 2 Hydride abstraction from cyclic amines, part I[2]
Zoom Image
Figure 3 Hydride abstraction from cyclic amines, part II[3]
Zoom Image
Figure 4 Hydride abstraction from cyclic amines, part III[4]
Zoom Image
Figure 5 Single-electron transfer (SET) from cyclic amines, part I[5]
Zoom Image
Figure 6 Single-electron transfer (SET) from cyclic amines, part II[6]
Zoom Image
Figure 7 Single-electron transfer (SET) from cyclic amines, part III[7]
Zoom Image
Figure 8 Hydrogen atom transfer (HAT) from cyclic amines, part I[8]
Zoom Image
Figure 9 Hydrogen atom transfer (HAT) from cyclic amines, part II[9]
Zoom Image
Figure 10 Hydrogen atom transfer (HAT) from cyclic amines, part III[10]
Zoom Image
Figure 11 Directed α-C–H bond activation of cyclic amines, followed by β-hydride elimination, part I[11]
Zoom Image
Figure 12 Directed α-C–H bond activation of cyclic amines, followed by β-hydride elimination, part II[12]
Zoom Image
Figure 13 Directed β-C–H bond activation of cyclic amines[13]
Zoom Image
Figure 14 Directed γ- and more remote C–H bond activation of cyclic amines, part I[14]
Zoom Image
Figure 15 Directed γ- and more remote C–H bond activation of cyclic amines, part II[15]
Zoom Image
Figure 16 Undirected remote C–H bond activation of cyclic amines[16]