Synlett 2023; 34(14): 1727-1731
DOI: 10.1055/a-2039-6352
letter

Enantioselective [2,3]-Wittig Rearrangement of Carboxylic Acid Derived Enolates by Tetradentate Chiral Lithium Amide

,
Midori Kawasaki
,
Ryuichi Shirai


Abstract

A chiral lithium amide mediated enantioselective [2,3]-Wittig rearrangement of carboxylic acid enolate has been developed. The reaction proceeds through the formation of a chiral mixed aggregate that shields one enantioface of enolate anion to give a highly functionalized chiral α-hydroxycarboxylic acid.

Supporting Information



Publication History

Received: 23 January 2023

Accepted after revision: 21 February 2023

Accepted Manuscript online:
21 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Vorarat S, Aromdee C, Podokmai Y. Anal. Sci. 2002; 18: 893
  • 2 Maurino VG, Engqvist MK. M. Arabidopsis Book 2015; 13: e0182
  • 3 Warth AH. Soil Sci. 1956; 82: 344
  • 4 Dalton B, Bhagabati P, De Micco J, Padamati RB, O’Connor K. Catalysts 2022; 12: 319
    • 5a Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Mar. Drugs 2012; 10: 963
    • 5b Liu J, Zhu X, Kim SJ, Zhang W. Nat. Prod. Rep. 2016; 33: 1146
    • 5c Weiss C, Figueras E, Borbely AN, Sewald N. J. Pept. Sci. 2017; 23: 514
    • 5d Wang X, Gong X, Li P, Lai D, Zhou L. Molecules 2018; 23: 169
    • 6a Van Scott EJ, Ditre CM, Yu RJ. Clin. Dermatol. 1996; 14: 217
    • 6b Green BA, Yu RJ, Van Scott EJ. Clin. Dermatol. 2009; 27: 495
    • 7a Coppola GM, Schuster HF. Hydroxy Acids in Enantioselective Syntheses. Wiley-VCH; Weinheim: 1997
    • 7b Ren Q, Ruth K, Thöny-Meyer L, Zinn M. Appl. Microbiol. Biotechnol. 2010; 87: 41
  • 8 Gu X, Wang L, Gao YF, Ma W, Li YM, Gong P. Tetrahedron: Asymmetry 2014; 25: 1573
    • 9a Bekele T, Shah MH, Wolfer J, Abraham CJ, Weatherwax A, Lectka T. J. Am. Chem. Soc. 2006; 128: 1810
    • 9b Abraham CJ, Paull DH, Bekele T, Scerba MT, Dudding T, Lectka T. J. Am. Chem. Soc. 2008; 130: 17085
    • 9c Wu S, Zhou Y, Wang T, Too HP, Wang DI. C, Li Z. Nat. Commun. 2016; 7: 11917
    • 9d Song W, Wang JH, Wu J, Liu J, Chen X.-L, Liu LM. Nat. Commun. 2018; 9: 3818
    • 9e Ma PJ, Tang F, Yao Y, Lu CD. Org. Lett. 2019; 21: 4671
    • 9f Xue J, Luo Z, Huang J, Deng Y, Dong S, Liu S. Org. Lett. 2022; 24: 9502
    • 9g Zhu J, Li Z, Li J, Tian D, Xu R, Tan Z, Chen Z, Tang W. Chem. Sci. 2023; 14: 1606
    • 10a Marshall JA. In Comprehensive Organic Synthesis, Vol. 3 Fleming I.; Pergamon Press Oxford, 1991; 975
    • 10b Nakai T, Mikami K. In Organic Reactions, Vol 46 . Paquette LA, Beak P, Ciganek E, Curran D, Hegedus L, Kelly RC, Overman LE, Roush W, Sih C, Smith AB. III, Uskokovic M, White JD. John Wiley & Sons; New York: 1994: 105
    • 10c Nakai T, Tomooka K. Pure Appl. Chem. 1997; 69: 595
    • 10d Wolfe JP. In Comprehensive Organic Synthesis, 2nd ed., Vol. 3 . Knochel P. Elsevier; Amsterdam: 2014: 1038
    • 11a Morita Y, Yamamoto T, Nagai H, Shimizu Y, Kanai M. J. Am. Chem. Soc. 2015; 137: 7075
    • 11b Kotani S, Yoshiwara Y, Ogasawara M, Sugiura M, Nakajima M. Angew. Chem. Int. Ed. 2018; 57: 15877
    • 11c Tanaka T, Yazaki R, Ohshima T. J. Am. Chem. Soc. 2020; 142: 4517
    • 11d Ota K, Nagao K, Ohmiya H. Org. Lett. 2021; 23: 4420
    • 11e Sun K, Ueno M, Imaeda K, Ueno K, Sawamura M, Shimizu Y. ACS Catal. 2021; 11: 9722
    • 11f Zhu C, Mandrelli F, Zhou H, Maji R, List B. J. Am. Chem. Soc. 2021; 143: 3312
    • 11g Tanaka T, Koga Y, Honda Y, Tsuruta A, Matsunaga N, Koyanagi S, Ohdo S, Yazaki R, Ohshima T. Nat. Synth. 2022; 1: 824
    • 12a Nakai T, Mikami K, Taya S, Kimura Y, Mimura T. Tetrahedron Lett. 1981; 22: 69
    • 12b Mikami K, Kawamoto K, Nakai T. Tetrahedron Lett. 1986; 27: 4899
    • 12c Kakinuma K, Li HY. Tetrahedron Lett. 1989; 30: 4157
    • 12d Marshall JA, Wang XJ. J. Org. Chem. 1990; 55: 2995
  • 13 Marshall JA, Wang XJ. J. Org. Chem. 1992; 57: 2747
  • 14 Manabe S. Chem. Pharm. Bull. 1998; 46: 335
    • 15a Shirai R, Tanaka M, Koga K. J. Am. Chem. Soc. 1986; 108: 543
    • 15b Muraoka M, Kawasaki H, Koga K. Tetrahedron Lett. 1988; 29: 337
    • 15c Murakata M, Nakajima M, Koga K. J. Chem. Soc., Chem. Commun. 1990; 40: 1657
    • 15d Sato D, Kawasaki H, Shimada I, Arata Y, Okamura K, Date T, Koga K. J. Am. Chem. Soc. 1992; 114: 761
    • 15e Shirai R, Aoki K, Sato D, Kim H.-D, Murakata M, Yasukata T, Koga K. Chem. Pharm. Bull. 1994; 42: 690
    • 15f Imai M, Hagihara A, Kawasaki H, Manabe K, Koga K. J. Am. Chem. Soc. 1994; 116: 8829
    • 15g Matsuo J, Koga K. Chem. Pharm. Bull. 1997; 45: 2122
    • 15h Yamashita Y, Odashima K, Koga K. Tetrahedron Lett. 1999; 40: 2803
    • 16a de Sousa SE, O’Brien P, Poumellec P. J. Chem. Soc., Perkin Trans. 1 1998; 1483
    • 16b Curthbertson E, O’Brien P, Towers TD. Synthesis 2001; 693
    • 16c Frizzle MJ, Caille S, Marshall TL, McRae K, Nadeau K, Guo G, Wu S, Martinelli MJ, Moniz GA. Org. Process Res. Dev. 2007; 11: 215
  • 17 Matsuo J, Koga K. Chem. Pharm. Bull. 1997; 45: 2122
    • 18a Stivala CE, Zakarian A. J. Am. Chem. Soc. 2011; 133: 11936
    • 18b Ma Y, Stivala CE, Wright AM, Hayton T, Liang J, Keresztes I, Lobkovsky E, Collum DB, Zakarian A. J. Am. Chem. Soc. 2013; 135: 16853
    • 18c Lu P, Jackson JJ, Eickhoff JA, Zakarian A. J. Am. Chem. Soc. 2015; 137: 656
    • 18d Yu K, Lu P, Jackson JJ, Nguyen T.-AD, Alvarado J, Stivala CE, Ma Y, Mack KA, Hayton TW, Collum DB, Zakarian A. J. Am. Chem. Soc. 2017; 139: 527
  • 19 Swingle NM, Reddy KV, Rossiter BE. Tetrahedron 1994; 50: 4455
  • 20 Analytical Data for Compound 4 1H NMR (495.1 MHz, CDCl3): δ = 5.81 (1 H, ddt, J = 6.9, 9.9, 17.3 Hz), 5.17 (1 H, dq, J = 1.5, 17.3 Hz), 5.15 (1 H, dq, J = 1.5, 9.9 Hz), 4.29 (1 H, q, J = 5.0 Hz), 3.80 (3 H, s), 2.77 (1 H, d, J = 5.0 Hz), 2.60 (1 H, ddt, J = 4.5, 6.9, 14.4 Hz), 2.45 (1 H, ddt, J = 6.9, 7.4, 14.4 Hz). 13C NMR (124.5 MHz, CDCl3): δ = 174.8 (C=O), 132.4 (CH), 118.7 (CH2), 70.0 (CH), 52.4 (CH3), 38.6 (CH2). IR (neat): 3480, 2954, 2925, 2853, 1746, 1645, 1455, 1437, 1377, 1260, 1212, 1103, 1018, 930 cm–1. MS (ESI+) m/z calcd for C6H10O3Na [M + Na]+: 153.05276; found: 153.05334; [α]D 25. 3 +5.60 (c 1.00, CHCl3, without HMPA); [α]D 24. 4 +9.22 (c 1.00, CHCl3, with HMPA)
  • 21 General Procedure for Enantioselective [2,3]-Wittig Rearrangement without HMPAA solution of (S,S)-3 (493 mg, 1.1 mmol) in THF (32 mL) was cooled to –78 °C, then to the solution was added dropwise n-BuLi in hexane (1.55 M; 2.83 mL, 4.4 mmol) over 2 min at –78 °C. After being stirred for 20 min at the same temperature, to the solution was added a solution of α-allyloxycarboxylic acid (1.0 mmol) in THF (2 mL) at –78 °C by cannulation. After 24 h, the reaction was quenched with H2O (15 mL) at –78 °C, and the mixture was acidified with 1 M HCl aq. (10 mL). The mixture was concentrated in vacuo to remove THF, and the residual solution was extracted with AcOEt (3 × 40 mL). The combined organic layer was dried with MgSO4 and filtered off. The filtrate was concentrated in vacuo. The crude product was used esterification without further purification.The crude rearrangement product was dissolved in CHCl3/MeOH (7:2; 9 mL). To the solution was added TMSCHN2 in hexane (0.6 M; 2.17 mL, 1.3 mmol), and the resulting solution was stirred for overnight. The solution was concentrated in vacuo. The residue was purified by silica gel column chromatography to afford α-allyl-α-hydroxycarboxylic acid methyl ester
  • 22 Weber B, Seebach D. Angew. Chem., Int. Ed. Engl. 1992; 31: 84
  • 23 General Procedure for Enantioselective [2,3]-Wittig Rearrangement with HMPAA solution of (S,S)-3 (493 mg, 1.1 mmol) in THF (32 mL) was cooled to –78 °C, then to the solution was added dropwise n-BuLi in hexane (1.55 M; 2.83 mL, 4.4 mmol) over 2 min at –78 °C. After being stirred for 20 min at the same temperature, to the solution was added HMPA (2.30 mL, 13 mmol), and the mixture was stirred for 15 min at –78 °C. To the mixture was added a solution of α-allyloxycarboxylic acid (1.0 mmol) in THF (2 mL) at –78 °C by cannulation. After 24 h, the reaction was quenched with H2O (15 mL) at –78 °C, and the mixture was acidified with 1 M HCl aq. (10 mL). The mixture was concentrated in vacuo to remove THF, and the residual solution was extracted with AcOEt (3 × 40 mL). The combined organic layer was dried with MgSO4 and filtered off. The filtrate was concentrated in vacuo. The crude product was used esterification without further purification. The crude rearrangement product was dissolved in CHCl3/MeOH (7:2; 9 mL). To the solution was added TMSCHN2 in hexane (0.6 M; 2.17 mL, 1.3 mmol), and the resulting solution was stirred for overnight. The solution was concentrated in vacuo. The residue was purified by silica gel column chromatography to afford α-allyl-α-hydroxycarboxylic acid methyl ester
    • 24a Kawabata T, Yahiro K, Fuji K. J. Am. Chem. Soc. 1991; 113: 9694
    • 24b Zhao H, Hsu D, Carlier P. Synthesis 2005; 1
    • 24c Alezra V, Kawabata T. Synthesis 2016; 48: 2997