Synlett
DOI: 10.1055/a-2170-2976
cluster
Japan/Netherlands Gratama Workshop

Reaction of Highly Volatile Organic Compounds with Organolithium Species in Flow Microreactor

Kensuke Muta
a   Fundamental Chemical Research Center, Central Glass Co., Ltd., 17-5, Nakadai 2-chome, Kawagoe City, Saitama 350-1159, Japan
,
b   Department of Chemistry, Graduate School of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
,
b   Department of Chemistry, Graduate School of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo 060-0810, Japan
› Author Affiliations
This work was supported by Japan Society for the Promotion of Science (JSPS KAKENHI) Grant Numbers, JP23K04744 (Grant-in-Aid for Scientific Research (C)), JP20KK0121 (Fostering Joint International Research (B)), JP21H01936 (Grant-in-Aid for Scientific Research (B)), JP21H01706 (Grant-in-Aid for Scientific Research (B)), and JP21H05080 (Grant-in-Aid for Transformative Research Areas (B)). This work was also partially supported by the Japan Agency for Medical Research and Development (AMED, JP21ak0101156), the Core Research for Evolutional Science and Technology (CREST, JPMJCR18R1), the New Energy and Industrial Technology Development Organization (NEDO, PJ22031410 and PJ22220030), the Japan Keirin Autorace Foundation (JKA Foundation), the Ogasawara Foundation for the Promotion of Science and Engineering, and the Takahashi Industrial and Economic Foundation.


Abstract

Highly volatile organic compounds (VOCs) with boiling points (bp) around or below room temperature are generally difficult to manipulate precisely in liquid-phase organic reactions although they offer significant atom-economic advantages. We have developed a novel approach using a jacketed syringe pump to enable the formylation of organolithium species in a continuous-flow system under ambient pressure. Methyl formate (bp 32 °C) worked as a formylating agent and was successfully delivered to the continuous operation for over 30 minutes in our microflow system. This methodology was successfully expanded to the application of acetaldehyde (bp 21 °C) and heptafluoropropyl bromide (bp 12 °C).

Supporting Information



Publication History

Received: 06 August 2023

Accepted after revision: 07 September 2023

Accepted Manuscript online:
07 September 2023

Article published online:
30 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Technical Overview of Volatile Organic Compounds . US Environmental Protection Agency; Washington: 2023. https: //www.epa.gov/indoor–air-quality-iaq/technical-overview-volatile-organic-compounds#2
  • 2 Salthammer T. Indoor Air 2016; 26: 25
  • 3 Fu B, Zhuang X, Jiang G, Shi J, Lu Y. Environ. Sci. Technol. 2007; 41: 7597
  • 4 Alexander M. Science 1981; 211: 132

    • For selected examples using autoclaves in a laboratory, see:
    • 5a Ohashi M, Kambara T, Hatanaka T, Saijo H, Doi R, Ogoshi S. J. Am. Chem. Soc. 2011; 133: 3256
    • 5b Trapasso G, Mazzi G, Chicharo B, Annatelli M, Dalla TD, Arico F. Org. Process Res. Dev. 2022; 26: 2830
    • 5c White TD, Alt CA, Cole KP, Groh JM, Johnson MD, Miller RD. Org. Process Res. Dev. 2014; 18: 1482

      For books and reviews on flow microreactor synthesis, see:
    • 6a Microreactors in Organic Chemistry and Catalysis, 2nd ed. Wirth T. Wiley; Hoboken: 2013
    • 6b Darvas F, Hessel V, Dorman G. Flow Chemistry 2014
    • 6c Yoshida J. Basics of Flow Microreactor Synthesis 2015
    • 6d Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
    • 6e Baxendale IR. J. Chem. Technol. Biotechnol. 2013; 88: 519
    • 6f Fukuyama T, Totoki T, Ryu I. Green Chem. 2014; 16: 2042
    • 6g Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
    • 6h Kobayashi S. Chem. Asian J. 2016; 11: 425
    • 6i Degennaro L, Carlucci C, De Angelis S, Luisi R. J. Flow Chem. 2016; 6: 136
    • 6j Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
    • 6k Cantillo D, Kappe CO. React. Chem. Eng. 2017; 2: 7
    • 6l Zhao T, Micouin L, Piccardi R. Helv. Chim. Acta 2019; 102: e1900172
    • 6m Power M, Alcock E, McGlacken GP. Org. Process Res. Dev. 2020; 24: 1814
    • 6n Nagaki A, Ashikari Y, Takumi M, Tamaki T. Chem. Lett. 2021; 50: 485
    • 6o Ashikari Y, Nagaki A. Synthesis 2021; 53: 1879
    • 6p Fu WC, MacQueenac PM, Jamison TF. Chem. Soc. Rev. 2021; 50: 7378

      For selected examples on microflow synthesis, see:
    • 7a Islam M, Kariuki BM, Shafiq Z, Wirth T, Ahmed N. Eur. J. Org. Chem. 2019; 1371
    • 7b Masui S, Manabe Y, Hirao K, Shimoyama A, Fukuyama T, Ryu I, Fukase K. Synlett 2019; 30: 397
    • 7c Elsherbini M, Winterson B, Alharbi H, Folgueiras-Amador AA, Génot C, Wirth T. Angew. Chem. Int. Ed. 2019; 58: 9811
    • 7d Ahn G.-N, Yu T, Lee H.-J, Gyak K.-W, Kang J.-H, You D, Kim D.-P. Lab Chip 2019; 19: 3535
    • 7e Picard B, Pérez K, Lebleu T, Vuluga D, Burel F, Harrowven DC, Chataigner I, Maddaluno J, Legros J. J. Flow Chem. 2020; 10: 139
    • 7f Laudadio G, Deng Y, van der Wal K, Ravelli D, Nuño M, Fagnoni M, Guthrie D, Sun Y, Noël T. Science 2020; 369: 92
    • 7g Chatterjee S, Guidi M, Seeberger PH, Gilmore K. Nature 2020; 579: 379
    • 7h Hoogendijk E, Swider E, Staal AH. J, White PB, van Riessen NK, Glaßer G, Lieberwirth I, Musyanovych A, Serra CA, Srinivas M, Koshkina O. ACS Appl. Mater. Interfaces 2020; 12: 49335
    • 7i Sugisawa N, Sugisawa H, Otake Y, Krems RV, Nakamura H, Fuse S. Chem.: Methods 2021; 1: 484
    • 7j Kondo M, Wathsala HD. P, Salem MS. H, Ishikawa K, Hara S, Takaai T, Washio T, Sasai H, Takizawa S. Commun. Chem. 2022; 5: 148
    • 7k Miyamura H, Kobayashi S. Angew. Chem. Int. Ed. 2022; 61: e202201203

      For selected examples of scale-up investigations in flow, see:
    • 8a Sugita S, Ishitani H, Kobayashi S. Bull. Chem. Soc. Jpn. 2023; 96: 744
    • 8b Harsany A, Conte A, Pichon L, Rabion A, Grenier S, Sandford G. Org. Process Res. Dev. 2017; 21: 273
    • 8c Ötvös SB, Georgiádes Á, Mándity IM, Kiss L, Fülöp F. Beilstein J. Org. Chem. 2013; 9: 1508
    • 8d Zhang Y, Born SC, Jensen KF. Org. Process Res. Dev. 2014; 18: 1476
    • 8e Hafner A, Meisenbach M, Sedelmeier J. Org. Lett. 2016; 18: 3630
    • 8f Mandai K, Yamamoto T, Mandai H, Nagaki A. Beilstein J. Org. Chem. 2022; 18: 660
    • 8g Ashikari Y, Maekawa K, Takumi M, Tomiyasu N, Fujita C, Matsuyama K, Miyamoto R, Bai H, Nagaki A. Catal. Today 2022; 388–389: 231
    • 8h Ashikari Y, Maekawa K, Ishibashi M, Fujita C, Shiosaki K, Bai H, Matsuyama K, Nagaki A. Green Process. Synth. 2021; 10: 722

      For selected examples of environmentally friendly processes in flow, see:
    • 9a Gemoets HP. L, Su Y, Shang M, Hessel V, Luque R, Noël T. Chem. Soc. Rev. 2016; 45: 83
    • 9b Buglioni L, Raymenants F, Slattery A, Zondag SD. A, Noel T. Chem. Rev. 2016; 116: 9664
    • 9c Frost CG, Mutton L. Green Chem. 2010; 12: 1687
    • 9d Tamaki T, Nagaki A. Tetrahedron Lett. 2021; 81: 153364
    • 9e Nakahara Y, Furusawa M, Endo Y, Shimazaki T, Takahashi Y, Jiang Y, Nagaki A. Chem. Eng. Technol. 2019; 42: 2154

      For selected examples of our recent contributions to flash chemistry, see:
    • 10a Ashikari Y, Saito K, Nokami T, Yoshida J, Nagaki A. Chem. Eur. J. 2019; 25: 15239
    • 10b Wakabayashi S, Takumi M, Kamio S, Wakioka M, Ohki Y, Nagaki A. Chem. Eur. J. 2023; 29: e202202882
    • 10c Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. Chem. Eur. J. 2023; e202301738
    • 10d Nakahara Y, Endo Y, Takahashi K, Kawaguchi T, Kato K, Matsuda Y, Nagaki A. Synthesis 2023; in press; DOI: 10.1055/a-2077-6187
    • 10e Takumi M, Sakaue H, Nagaki A. Angew. Chem. Int. Ed. 2022; 61: e2021161
    • 10f Takumi M, Sakaue H, Shibasaki D, Nagaki A. Chem. Commun. 2022; 58: 8344
    • 10g Nagaki A, Ashikari Y, Takumi M, Tamaki T. Chem. Lett. 2021; 50: 485
    • 10h Ashikari Y, Kawaguchi T, Mandai K, Aizawa Y, Nagaki A. J. Am. Chem. Soc. 2020; 142: 17039
    • 10i Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 1567
    • 10j Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 10924
  • 11 Mallia CJ, Baxendale IR. Org. Process Res. Dev. 2016; 20: 327

    • In general, N,N-dimethylformamide (DMF) is the standard choice for formylation reactions using organometallic reagents. Because methyl formate is a manufacturing feedstock of DMF, replacement of DMF is meaningful for industrial process research. See:
    • 12a Hashmi AS. K. Sci. Synth. 2007; 25: 337
    • 12b Kawasaki T, Matsumura Y, Tsutsumi T, Suzuki K, Ito M, Soai K. Science 2009; 324: 492
    • 12c Prakash DJ, Xin L, Rai-Shung L. ACS Catal. 2018; 8: 9697
    • 12d Wieteck M, Tokimizu Y, Rudolph M, Rominger F, Ohno H, Fujii N, Hashmi AS. K. Chem. Eur. J. 2014; 20: 16331

      For papers on competitive consecutive reactions, see:
    • 13a Fuoss RM. J. Am. Chem. Soc. 1943; 65: 2406
    • 13b Friedman MH, White RR. AIChE J. 1962; 8: 581
  • 14 Because of the rapid-mixing microflow system, we can avoid the lower temperature in generation of aryllithium species. See: Nagaki A, Hirose K, Moriwaki Y, Takumi M, Takahashi Y, Mitamura K, Matsukawa K, Ishizuka N, Yoshida J.-i. Catalysts 2019; 9: 300

    • We have previously emphasized the significance of mixing efficiency in controlling sequential reactions. See:
    • 15a Nagaki A, Yamashita H, Hirose K, Tsuchihashi Y, Yoshida J. Angew. Chem. Int. Ed. 2019; 58: 4027
    • 15b Kim H, Nagaki A, Yoshida J. Nat. Commun. 2011; 2: 264
    • 16a Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2008; 47: 7833
    • 16b Nagaki A, Kim H, Moriwaki Y, Matsuo C, Yoshida J. Chem. Eur. J. 2010; 16: 11167
    • 16c Nagaki A, Kim H, Yoshida J. Angew. Chem. Int. Ed. 2009; 48: 8063
    • 16d Nagaki A, Kim H, Usutani H, Matsuo C, Yoshida J. Org. Biomol. Chem. 2010; 8: 1212
    • 16e Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J. Green Chem. 2011; 13: 1110
    • 16f Nagaki A, Yamada D, Yamada S, Doi M, Ichinari D, Tomida Y, Takabayashi N, Yoshida J. Aust. J. Chem. 2013; 66: 199
    • 16g Nagaki A, Tokuoka S, Yamada S, Tomida Y, Oshiro K, Amii H, Yoshida J. Org. Biomol. Chem. 2011; 9: 1212
    • 17a Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 17b Rygus JP. G, Crudden CM. J. Am. Chem. Soc. 2017; 139: 18124
    • 18a Horner L, Hoffmann HM. R, Wippel HG. Chem. Ber. 1958; 91: 61
    • 18b Wadsworth WS. Jr, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 18c Bisceglia JA, Orelli LR. Curr. Org. Synth. 2015; 19: 744
    • 19a Maurya S, Yadav D, Pratapa K, Kumar A. Green Chem. 2017; 19: 629
    • 19b Darwish KM, Salama I, Mostafa S, Gomaa MS, Khafagy ES, Helal MA. Bioorg. Med. Chem. Lett. 2018; 28: 1595
  • 20 General Procedure: Solutions were continuously introduced to the flow microreactor system using syringe pumps (Harvard PHD2000 and TELEDYNE ISCO SyriXus 260x). A flow microreactor system consisting of two T-shaped micromixers (M1 and M2, φ = 250 or 500 μm), two microtube reactors (R1 and R2), and four tube precooling units were used. The flow microreactor system was dipped in a cooling bath1 (T 1 °C), and cooling bath2 (T 2 °C). After reaching a steady state, the outcoming solution was collected for 30 seconds in a vessel containing 4 mL of sat. aq. NH4Cl. The yield was determined by GC analysis using undecane as an internal standard.