Horm Metab Res 2009; 41(1): 16-22
DOI: 10.1055/s-0028-1087170
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Uniaxial Cyclic Stretch Increases Glucose Uptake into C2C12 Myotubes through a Signaling Pathway Independent of Insulin-like Growth Factor I

M. Iwata 1 , 2 , S. Suzuki 1 , K. Hayakawa 3 , T. Inoue 1 , K. Naruse 4
  • 1Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan
  • 2Current address: Department of Rehabilitation, Faculty of Health Sciences, Nihon Fukushi University, Handa, Japan
  • 3ICORP/SORST Cell Mechanosensing, Japan Science and Technology Agency, Showa-ku, Nagoya, Japan
  • 4Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
Further Information

Publication History

received 26.02.2008

accepted 04.06.2008

Publication Date:
07 October 2008 (online)

Abstract

Insulin-like growth factor I (IGF-I), an autocrine/paracrine growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and mechanical stimuli such as stretch, IGF-I stimulates glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscles. It is known that IGF-I is secreted from skeletal muscle cells in response to stretch. Therefore, we examined whether IGF-I is involved in the mechanism by which mechanical stretch regulates glucose transport using cultured C2C12 myotubes. IGF-I increased 2-deoxy-D-glucose (2-DG) uptake, and this created an additive effect with mechanical stretch, suggesting that these stimuli enhance glucose transport through different mechanisms. In fact, IGF-I-stimulated 2-DG uptake was not blocked by dantrolene (an inhibitor of Ca2+release from sarcoplasmic reticulum), whereas the stretch-stimulated effect was abolished. Conversely, the IGF-I-stimulated 2-DG uptake was prevented by phosphatidylinositol 3-kinase inhibitor wortmannin, which did not prevent the stretch-stimulated 2-DG uptake. In addition, experiments using media conditioned by stretched myotubes indicated that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for induction of 2-DG uptake. Thus, our results demonstrate that mechanical stretch signaling for glucose transport is independent of the mechanism through which IGF-I increases this transport.

References

  • 1 Pereira LO, Lancha Jr AH. Effect of insulin and contraction up on glucose transport in skeletal muscle.  Prog Biophys Mol Biol. 2004;  84 1-27
  • 2 Holloszy JO. A forty-year memoir of research on the regulation of glucose transport into muscle.  Am J Physiol Endcrinol Metab. 2003;  284 E453-E467
  • 3 Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro.  Am J Physiol Regul Integr Comp Physiol. 1992;  262 R350-R355
  • 4 Adachi R, Yabusaki K, Obinata T. Uptake of albumin is coupled with stretch-induced hypertrophy of skeletal muscle cells in culture.  Zoolog Sci. 2003;  20 557-565
  • 5 Ito Y, Obara K, Ikeda R, Ishii M, Tanabe Y, Ishikawa T, Nakayama K. Passive stretching produces Akt- and MAPK-dependent augmentations of GLUT4 translocation and glucose uptake in skeletal muscles of mice.  Pflugers Arch. 2006;  451 803-813
  • 6 Ihlemann J, Ploug T, Hellsten Y, Galbo H. Effect of tension on contraction-induced glucose transport in rat skeletal muscle.  Am J Physiol Endocrinol Metab. 1999;  277 E208-E214
  • 7 Mitsumoto Y, Downey GP, Klip A. Stimulation of glucose transport in L6 muscle cells by long-term intermittent stretch-relaxation.  FEBS Lett. 1992;  301 94-98
  • 8 Iwata M, Hayakawa K, Murakami T, Naruse K, Kawakami K, Inoue-Miyazu M, Yuge L, Suzuki S. Uniaxial cyclic stretch-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in cultured skeletal muscle cells.  Pathobiology. 2007;  74 159-168
  • 9 Holloszy JO, Narahara HT. Enhanced permeability to sugar associated with muscle contraction. Studies of the role of Ca2+.  J Gen Physiol. 1967;  50 551-562
  • 10 Youn JH, Gulve EA, Holloszy JO. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction.  Am J Physiol Cell Physiol. 1991;  260 C555-C561
  • 11 Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures.  FASEB J. 1996;  10 502-509
  • 12 Perrone CE, Fenwick-Smith D, Vandenburgh HH. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells.  J Biol Chem. 1995;  270 2099-2106
  • 13 Zapf J, Froesch ER. Insulin-like growth factors/somatomedins: structure, secretion, biological actions and physiological role.  Horm Res. 1986;  24 121-130
  • 14 Singleton JR, Feldman EL. Insulin-like growth factor-I in muscle metabolism and myotherapies.  Neurobiol Dis. 2001;  8 541-554
  • 15 Adams GR. Invited Review: Autocrine/paracrine IGF-I and skeletal muscle adaptation.  J Appl Physiol. 2002;  93 1159-1167
  • 16 Tidball JG. Mechanical signal transduction in skeletal muscle growth and adaptation.  J Appl Physiol. 2005;  98 1900-1908
  • 17 Bilan PJ, Mitsumoto Y, Ramlal T, Klip A. Acute and long-term effects of insulin-like growth factor I on glucose transporters in muscle cells. Translocation and biosynthesis.  FEBS Lett. 1992;  298 285-290
  • 18 Lund S, Flyvbjerg A, Holman GD, Larsen FS, Pedersen O, Schmitz O. Comparative effects of IGF-I and insulin on the glucose transporter system in rat muscle.  Am J Physiol Endcrinol Metab. 1994;  267 E461-E466
  • 19 Hu BS, Landeen LK, Aroonsakool N, Giles WR. An analysis of the effects of stretch on IGF-I secretion from rat ventricular fibroblasts.  Am J Physiol Heart Circ Physiol. 2007;  293 H677-H683
  • 20 Naruse K, Yamada T, Sokabe M. Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch.  Am J Physiol Heart Circ Physiol. 1998;  274 H1532-H1538
  • 21 Klip A, Logan WJ, Li G. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H] cytochalasin B binding sites.  Biochem Biophys Acta. 1982;  687 265-280
  • 22 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 23 Winkle WB Van. Calcium release from skeletal muscle sarcoplasmic reticulum: site of action of dantrolene sodium.  Science. 1976;  193 1130-1131
  • 24 Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC, Waterfield MD. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin.  Biochem J. 1997;  326 139-147
  • 25 Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signaling.  Biochem J. 1998;  333 471-490
  • 26 Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle.  Nature. 1977;  270 725-727
  • 27 Shimokawa T, Kato M, Ezaki O, Hashimoto S. Transcriptional regulation of muscle-specific genes during myoblast differentiation.  Biochem Biophys Res Commun. 1998;  246 287-292
  • 28 Richardson JM, Pessin JE. Identification of a skeletal muscle-specific regulatory domain in the rat GLUT4/muscle-fat gene.  J Biol Chem. 1993;  268 21021-21027
  • 29 Kimball SR, Farrell PA, Jefferson LS. Invited Review: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise.  J Appl Physiol. 2000;  93 1168-1180
  • 30 Sell H, Kaiser U, Eckel J. Expression of chemokine receptors in insulin-resistant human skeletal muscle cells.  Horm Metab Res. 2007;  39 244-249
  • 31 Zorzano A, James DE, Ruderman NB, Pilch PF. Insulin-like growth factor I binding and receptor kinase in red and white muscle.  FEBS Lett. 1988;  234 257-262
  • 32 Dohm GL, Elton CW, Raju MS, Mooney ND, DiMarchi R, Pories WJ, Flickinger EG, Atkinson Jr SM, Caro JF. IGF-I-stimulated glucose transport in human skeletal muscle and IGF-I resistance in obesity and NIDDM.  Diabetes. 1990;  39 1028-1032
  • 33 Le Roith D, Scavo L, Butler A. What is the role of circulating IGF-I?.  Trends Endocrinol Metab. 2001;  12 48-52
  • 34 MacKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G. Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation.  J Physiol. 1999;  516 583-592
  • 35 LeRoith D, Werner H, Beitner-Johnson D, Roberts Jr CT. Molecular and cellular aspects of the insulin-like growth factor I receptor.  Endocr Rev. 1995;  16 143-163
  • 36 Meyts P De, Wallach B, Christoffersen CT, Ursø B, Grønskov K, Latus LJ, Yakushiji F, Ilondo MM, Shymko RM. The insulin-like growth factor-I receptor. Structure, ligand-binding mechanism and signal transduction.  Horm Res. 1994;  42 152-169
  • 37 Vroede MA de, Romanus JA, Standaert ML, Pollet RJ, Nissley SP, Rechler MM. Interaction of insulin-like growth factors with a nonfusing mouse muscle cell line: binding, action, and receptor down-regulation.  Endocrinology. 1984;  114 1917-1929
  • 38 Beguinot F, Kahn CR, Moses AC, Smith RJ. Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells.  J Biol Chem. 1985;  260 15892-15898
  • 39 Maher F, Clark S, Harrison LC. Chronic stimulation of glucose transporter gene expression in L6 myocytes mediated via the insulin-like growth factor-1 receptor.  Mol Endocrinol. 1989;  3 2128-2135
  • 40 Thong FS, Dugani CB, Klip A. Turning signals on and off: GLUT4 traffic in the insulin-signaling highway.  Physiology. 2005;  20 271-284
  • 41 Ishiki M, Randhawa VK, Poon V, Jebailey L, Klip A. Insulin regulates the membrane arrival, fusion, and C-terminal unmasking of glucose transporter-4 via distinct phosphoinositides.  J Biol Chem. 2005;  280 28792-28802
  • 42 Kanda H, Tamori Y, Shinoda H, Yoshikawa M, Sakaue M, Udagawa J, Otani H, Tashiro F, Miyazaki J, Kasuga M. Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization.  J Clin Invest. 2005;  115 291-301
  • 43 Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, Stein RC, Waterfield MD. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin.  Biochem J. 1997;  326 139-147

Correspondence

S. SuzukiPhD 

Program in Physical and Occupational Therapy

Nagoya University Graduate School of Medicine

1-1-20 Daikominami

Higashi-ku

Nagoya 461-8673

Japan

Phone: +81/52/719 13 62

Fax: +81/52/719 13 62

Email: suzuki@met.nagoya-u.ac.jp

    >