Neuropediatrics 2010; 41(6): 256-260
DOI: 10.1055/s-0031-1273720
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Spontaneous Rapid Resolution of Acute Basal Ganglia Changes in an Untreated Infant with Propionic Acidemia: A Clue to Pathogenesis?

A. Broomfield1 , R. Gunny2 , P. Prabhakar3 , S. Grunewald1
  • 1Department of Metabolic Disease, Great Ormond Street Hospital with UCL Institute of Child Health, London, UK
  • 2Department of Neuroradiology, Great Ormond Street Hospital with UCL Institute of Child Health, London, UK
  • 3Department of Paediatric Neurology, Great Ormond Street Hospital with UCL Institute of Child Health, London, UK
Further Information

Publication History

received 31.3.2010

accepted 15.2.2011

Publication Date:
28 March 2011 (online)

Abstract

Basal ganglia lesions are a well reported feature of acute decompensation in propionic acidemia; however, their underlying causation still needs to be fully elucidated. We report an 8-month-old infant whose lesions had almost completely resolved radiologically within 3 weeks of initial presentation without specific metabolic management and in light of this, we discuss the current thinking on their pathogenesis.

References

  • 1 Arri J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up.  Am J Neuroradiology. 2000;  21 1502-1509
  • 2 Atkuria KR, Cowanb TM, Kwanc T. et al . Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia.  Proc Natl Acad Sci U S A. 2009;  106 3941-3945
  • 3 Bergman AJ, Van Der Knaap MS, Smeitink JA. et al . The BT magnetic resonance imaging and spectroscopy of the brain in propionic acidaemia: clinical and biochemical considerations.  Pediatric Research. 1996;  40 404-409
  • 4 Bhagavati S, Choi J. Reversible basal ganglia and amygdala lesions in central nervous system lupus.  J Rheumatol. 2008;  35 2451-2453
  • 5 Bhagavati S, Choi J. Atypical cases of posterior reversible encephalopathy syndrome. Clinical and MRI features.  Cerebrovasc Dis. 2008;  26 564-566
  • 6 Brismar J, Ozand PT. CT and MRI in disorders of propinate and methylmalonate metabolism.  Am J Neuroradiol. 1994;  15 1459-1473
  • 7 Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate.  Eur J Biochem. 2004;  271 3227-3241
  • 8 Brunengraber H, Roe CR. Anaplerotic molecules: Current and future.  J Inherit Metab Dis. 2006;  29 327-331
  • 9 Chan PH, Schmidley JW, Fishman RA. et al . Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals.  Neurology. 1984;  34 315-329
  • 10 Chemelli AP, Schocke M, Sperl W. et al . Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia.  J Magn Reson Imaging. 2000;  11 596-600
  • 11 Danbolt NC. Glutamate uptake.  Prog Neurobiol. 2001;  65 1-105
  • 12 De Almeida LM, Funchal C, Pelaez Pde L. et al . Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development.  Metab Brain Dis. 2003;  18 207-219
  • 13 Dematteis M, Kahane P, Vercueil L. et al . MRI evidence for the involvement of basal ganglia in epileptic seizures: an hypothesis.  Epileptic Disord. 2003;  5 161-164
  • 14 Dinopoulos A, Cecel KM, Schaprio MB. et al . Brain MRI and MRS findings in infants and children with respiratory chain defects.  Neuropediatrics. 2005;  36 290-301
  • 15 Fenton WA, Gravel RA, Rosenberg DS. Disorders of propionate and methylmalonic acid metabolism.. In: Scriver CR, Baudette AL, Sly W, Valle D, eds. The metabolic and molecular bases of inherited metabolic disease 8th edn New York: McGraw-Hill; 2001: 2165-2190
  • 16 Fontella FU, Pulrolnik V, Gassen E. et al . Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats.  Neuroreport. 2000;  11 541-544
  • 17 Gregerson N. The specific inhibition of the pyruvate dehydrogenase complex from pig kidney by propionyl CoA and isovaleryl-CoA.  Biochem Med. 1981;  26 20-27
  • 18 Haberlant E, Canestrini C, Brunner-Krainz M. et al . Epilepsy in patients with propionic acidemia.  Neuropediatrics. 2009;  40 120-125
  • 19 Hamilton RL, Haas RH, Nyhan WL. et al . Neuropathology of propionic acidemia: a report of two patients with basal ganglia lesions.  J Child Neurol. 1995;  10 25-30
  • 20 Hayasaka K, Tada K. Effects of the metabolites of the branched-chain amino acids and cysteamine on the glycine cleavage system.  Biochem Int. 1983;  6 225-230
  • 21 Heoa JH, Hana SW, Lee SK. Free radicals as triggers of brain edema formation after stroke.  Free Radical Biology Med. 2005;  39 51-70
  • 22 Johnson JA, Le KL, Palacios E. Propionic acidemia: case report and review of neurologic sequelae.  Pediatr Neurol. 2009;  40 317-320
  • 23 Kang EG, Jeon SJ, Choi SS. et al . Diffusion MR imaging of hypoglycemic encephalopathy.  Am J Neuroradiol. 2010;  31 559-564
  • 24 Kölker S, Mayatepek E, Hoffmann GF. White matter disease in cerebral organic acid disorders: clinical implications and suggested pathomechanisms.  Neuropediatrics. 2002;  33 225-231
  • 25 Kolker S, Sauer SW, Surtees RA. et al . The aetiology of neurological complications of organic acidaemias – A role for the blood-brain barrier.  J Inherit Metab Dis. 2006;  29 701-704
  • 26 Lee JM, Grabb MC, Zipfe G. et al . Brain tissue responses to ischemia.  J Clin Invest. 2000;  106 723-731
  • 27 Matsumoto R, Haradahira T, Ito H. et al . Measurement of glycine binding site of N-methyl D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11c] methoxybenzyl)phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography.  Synapse. 2007;  61 795-800
  • 28 McGuire PJ, Parikh A, Diaz GA. Profiling of oxidative stress in patients with inborn errors of metabolism.  Mol Genet Metab. 2009;  98 173-180
  • 29 Nguyen NH, Morland C, Gonzalez SV. et al . Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia.  Relevance for propionic acidemia: J Neurochem. 2007;  101 806-814
  • 30 Nyhan WL, Bay C, Beyer EW. et al . Neurologic non-metabolic presentation of propionic acidemia.  Arch Neurol. 1999;  56 1143-1147
  • 31 Okun JG, Horster F, Farkas LM. et al . Neurodegeneration in methylmalonic aciduria involves inhibition of complex ii and the tricarboxylic acid cycle, and synergistically acting excitotoxicity.  J Biol Chem. 2002;  277 14674-14680
  • 32 Ozand PT, Rahed M, Gascon GG. et al . Unusual presentations of propionic acidemia.  Brain Develop. 1994;  16 46-57
  • 33 Rigo FK, Pasquetti L, Malfatti CRM. et al . Propionic acid induces convulsions and protein carbonylation in rats.  Neurosci Lett. 2006;  408 151-154
  • 34 Roig M, Macaya A, Munell F. et al . Acute neurologic dysfunction associated with destructive lesions of the basal ganglia: a benign form of infantile bilateral striatal necrosis.  J Pediatr. 1990;  117 578-581
  • 35 Roig M, Calopa M, Rovira A. et al . Bilateral striatal lesions in childhood.  Pediatr Neurol. 1993;  9 349
  • 36 Russell RR, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.  J Clin Invest. 1991;  87 384-390
  • 37 Sass JO, Hofmann M, Skladal D. et al . Propionic acidemia revisited: A workshop report.  Clin Pediatr. 2004;  43 837-843
  • 38 Sauer SW, Opp S, Mahringer A. et al . Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexushim.  Biophys Acta. 2010;  1802 552-560
  • 39 Scholl-Burgi S, Korman SH, Applegarth DA. et al . The relation of cerebrospinal fluid and plasma glycine levels in propionic acidaemia, a ‘ketotic hyperlycinaemia’.  J Inherit Metab Dis. 2008;  31 395-398
  • 40 Scholl-Burgi S, Heberlandt E, Gotwald T. et al . Stroke like episodes in propionic acidemia caused by central focal metabolic decompensation.  Neuropediatrics. 2009;  40 76-81
  • 41 Scholl-Burgi S, Sass JO, Heinz-Erian P. Changes in plasma amino acid concentration with increasing age in patients with propionic acidemia.  Amino Acids. 2010;  38 1473-1481
  • 42 Schwab MA, Sauer SW, Okun JG. et al . Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins.  Biochem J. 2006;  398 107-112
  • 43 Singhi P, Subramanian C, Jain V. et al . Reversible brain lesions in childhood hypertension.  acta pædiatr. 2002;  91 1005-1007
  • 44 Stumpf DA, McAfee J, Parks JK. et al . Propionate inhibition of succinate:CoA ligase (GDP) and the citric acid cycle in mitochondria.  Pediatr Res. 1980;  14 1127-1131
  • 45 Tada K, Kure S. Non-ketotic hyperglycinaemia: molecular lesion, diagnosis and pathophysiology.  J Inherit Metab Dis. 1993;  16 691-703
  • 46 Wolf B, Hsia YE, Sweetman L. et al . Propionic acidemia: a clinical update.  J Pediatr. 1981;  99 835-846
  • 47 Walter JH, Wraith JE, Cleary MA. Absence of acidosis in the initial presentation of propionic acidaemia.  Arch Dis. 1995;  72 F197

Correspondence

Alexander Broomfield

Department of Metabolic

Disease

Ormond Street Hospital

Great Ormond Street

London WC1N 3JH

United Kingdom

Phone: +44/207/405 9200

Fax: +44/207/829 8643

Email: BroomA@gosh.nhs.uk

    >