J Knee Surg 2012; 25(01): 031-036
DOI: 10.1055/s-0032-1308822
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Nontraditional Modification to Articular Cartilage

Vasili Karas
1   Division of Sports Medicine, Department of Orthopedics, Rush University Medical Center, Chicago, Illinois
,
Neil Ghodadra
2   Division of Sports Medicine, Department of Orthopedics, Southern California Orthopedic Institute, Van Nuys, California
,
Ellen Kroin
1   Division of Sports Medicine, Department of Orthopedics, Rush University Medical Center, Chicago, Illinois
,
Brian J. Cole
1   Division of Sports Medicine, Department of Orthopedics, Rush University Medical Center, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

08 November 2011

28 December 2011

Publication Date:
12 April 2012 (online)

Abstract

Biomechanical imbalance, trauma, and age-related degeneration often result in chondral lesions, which may lead to overt osteoarthritis over time. Such cartilage pathology is frequently accompanied by persistent pain and loss of normal joint function. As a result, patients who suffer from biologically active articular cartilage lesions are often unable to function in both high level activities and exhibit compromised activities of daily living. The limited potential for self-regeneration of hyaline cartilage has led to the emergence of new technologies to solve this difficult clinical problem. Treatment of arthritis and chondral lesions includes alleviation of pain and return of function through pharmacologic intervention and/or attempts at cartilage reparative, restorative and reconstructive options.

 
  • References

  • 1 Nehrer S, Breinan HA, Ramappa A , et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 1997; 18 (11) 769-776
  • 2 McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc 2008; 16 (4) 196-201
  • 3 Bellamy N, Campbell J, Gee T, Robinson V, Bourne R, Wells G. Efficacy of intra-articular corticosteroid treatment in knee osteoarthritis. Cochrane Review 2006; 64: 494-494
  • 4 Gigante A, Callegari L. The role of intra-articular hyaluronan (Sinovial) in the treatment of osteoarthritis. Rheumatol Int 2011; 31 (4) 427-444
  • 5 Quintana L, zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev 2009; 15 (1) 29-41
  • 6 Gaissmaier C, Koh JL, Weise K. Growth and differentiation factors for cartilage healing and repair. Injury 2008; 39 (Suppl. 01) S88-S96
  • 7 Hill DJ, Logan A. Peptide growth factors and their interactions during chondrogenesis. Prog Growth Factor Res 1992; 4 (1) 45-68
  • 8 Hoffmann A, Gross G. BMP signaling pathways in cartilage and bone formation. Crit Rev Eukaryot Gene Expr 2001; 11 (1–3) 23-45
  • 9 Plaas A, Velasco J, Gorski DJ , et al. The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 2011; 19 (9) 1081-1090
  • 10 Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev 2010; 16 (4) 435-444
  • 11 Dickhut A, Dexheimer V, Martin K, Lauinger R, Heisel C, Richter W. Chondrogenesis of human mesenchymal stem cells by local transforming growth factor-beta delivery in a biphasic resorbable carrier. Tissue Eng Part A 2010; 16 (2) 453-464
  • 12 Fan H, Hu Y, Li X , et al. Ectopic cartilage formation induced by mesenchymal stem cells on porous gelatin-chondroitin-hyaluronate scaffold containing microspheres loaded with TGF-beta1. Int J Artif Organs 2006; 29 (6) 602-611
  • 13 Re'em T, Kaminer-Israeli Y, Ruvinov E, Cohen S. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 2012; 33 (3) 751-761
  • 14 Blaney Davidson EN, van der Kraan PM, van den Berg WB. TGF-beta and osteoarthritis. Osteoarthritis Cartilage 2007; 15 (6) 597-604
  • 15 Wang W, Li B, Yang J , et al. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials 2010; 31 (34) 8964-8973
  • 16 Olivos-Meza A, Fitzsimmons JS, Casper ME , et al. Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits. Osteoarthritis Cartilage 2010; 18 (9) 1183-1191
  • 17 Guo X, Park H, Young S , et al. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater 2010; 6 (1) 39-47
  • 18 Fan H, Liu H, Zhu R , et al. Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells. Cell Transplant 2007; 16 (8) 823-832
  • 19 Guo X, Zheng Q, Yang S , et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 2006; 1 (4) 206-215
  • 20 Bakker AC, van de Loo FA, van Beuningen HM , et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage 2001; 9 (2) 128-136
  • 21 Tang QO, Shakib K, Heliotis M , et al. TGF-beta3: A potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther 2009; 9 (6) 689-701
  • 22 Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z. TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 2010; 95 (4) 982-992
  • 23 Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010; 376 (9739) 440-448
  • 24 Gouttenoire J, Valcourt U, Ronzière MC, Aubert-Foucher E, Mallein-Gerin F, Herbage D. Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology 2004; 41 (3–4) 535-542
  • 25 Claus S, Aubert-Foucher E, Demoor M , et al. Chronic exposure of bone morphogenetic protein-2 favors chondrogenic expression in human articular chondrocytes amplified in monolayer cultures. J Cell Biochem 2010; 111 (6) 1642-1651
  • 26 Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 2010; 376 (9739) 440-448
  • 27 Toh WS, Liu H, Heng BC, Rufaihah AJ, Ye CP, Cao T. Combined effects of TGFbeta1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors 2005; 23 (4) 313-321
  • 28 Postlethwaite AE, Raghow R, Stricklin G, Ballou L, Sampath TK. Osteogenic protein-1, a bone morphogenic protein member of the TGF-β superfamily, shares chemotactic but not fibrogenic properties with TGF-β. J Cell Physiol 1994; 161 (3) 562-570
  • 29 Krawczak DA, Westendorf JJ, Carlson CS, Lewis JL. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability. Tissue Eng Part A 2009; 15 (6) 1247-1255
  • 30 Elshaier AM, Hakimiyan AA, Rappoport L, Rueger DC, Chubinskaya S. Effect of interleukin-1beta on osteogenic protein 1-induced signaling in adult human articular chondrocytes. Arthritis Rheum 2009; 60 (1) 143-154
  • 31 Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. Int Orthop 2007; 31 (6) 773-781
  • 32 Gavenis K, Schneider U, Wallich R, Mueller-Rath R, Schmidt-Rohlfing B, Andereya S. Effects of low concentrated BMP-7 administered by co-cultivation or plasmid transfection on human osteoarthritic chondrocytes. Int J Artif Organs 2010; 33 (6) 339-347
  • 33 Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J, McAlindon T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord 2010; 11: 232
  • 34 Hunter DJ, Pike MC, Jonas BL, Kissin E, Krop J, McAlindon T. Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord 2010; 11: 232
  • 35 Schmal H, Niemeyer P, Zwingmann J, Stoffel F, Südkamp NP, Mehlhorn AT. Association between expression of the bone morphogenetic proteins 2 and 7 in the repair of circumscribed cartilage lesions with clinical outcome. BMC Musculoskelet Disord 2010; 11: 170
  • 36 Chubinskaya S, Hakimiyan A, Pacione C , et al. Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads. Osteoarthritis Cartilage 2007; 15 (4) 421-430
  • 37 Busschers E, Holt JP, Richardson DW. Effects of glucocorticoids and interleukin-1 beta on expression and activity of aggrecanases in equine chondrocytes. Am J Vet Res 2010; 71 (2) 176-185
  • 38 Allen KD, Adams Jr SB, Mata BA , et al. Gait and behavior in an IL1β-mediated model of rat knee arthritis and effects of an IL1 antagonist. J Orthop Res 2011; 29 (5) 694-703
  • 39 Ley C, Svala E, Nilton A , et al. Effects of high mobility group box protein-1, interleukin-1β, and interleukin-6 on cartilage matrix metabolism in three-dimensional equine chondrocyte cultures. Connect Tissue Res 2011; 52 (4) 290-300
  • 40 Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The potential of IGF-1 and TGFbeta1 for promoting “adult” articular cartilage repair: an in vitro study. Tissue Eng Part A 2008; 14 (7) 1251-1261
  • 41 Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 2011; 7 (1) 33-42
  • 42 Fortier LA, Miller BJ. Signaling through the small G-protein Cdc42 is involved in insulin-like growth factor-I resistance in aging articular chondrocytes. J Orthop Res 2006; 24 (8) 1765-1772
  • 43 Eli N, Oragui E, Khan W. Advances in meniscal tissue engineering. Ortop Traumatol Rehabil 2011; 13 (4) 319-326
  • 44 Brandl A, Angele P, Roll C, Prantl L, Kujat R, Kinner B. Influence of the growth factors PDGF-BB, TGF-beta1 and bFGF on the replicative aging of human articular chondrocytes during in vitro expansion. J Orthop Res 2010; 28 (3) 354-360
  • 45 Gomez-Camarillo MA, Almonte-Becerril M, Vasquez Tort M, Tapia-Ramirez J, Kouri Flores JB. Chondrocyte proliferation in a new culture system. Cell Prolif 2009; 42 (2) 207-218
  • 46 Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res 2008; 26 (10) 1407-1412
  • 47 Frisbie DD, Kawcak CE, Werpy NM, Park RD, McIlwraith CW. Clinical, biochemical, and histologic effects of intra-articular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res 2007; 68 (3) 290-296
  • 48 Wehling P, Moser C, Frisbie D , et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs 2007; 21 (5) 323-332
  • 49 Milano G, Deriu L, Sanna Passino E , et al. The effect of autologous conditioned plasma on the treatment of focal chondral defects of the knee. An experimental study. Int J Immunopathol Pharmacol 2011; 24 (1, Suppl 2) 117-124
  • 50 Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res 2011; 469 (10) 2706-2715
  • 51 Georg R, Maria C, Gisela A, Bianca C. Autologous conditioned plasma as therapy of tendon and ligament lesions in seven horses. J Vet Sci 2010; 11 (2) 173-175
  • 52 Baltzer AW, Moser C, Jansen SA, Krauspe R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthritis Cartilage 2009; 17 (2) 152-160
  • 53 Miller Y, Bachowski G, Benjamin R, Eklund D, Hibbard A, Lightfoot T. Practice Guidelines for Blood Transfusion: A Compilation from Recent Peer-Reviewed Literature. Washington, DC: American Red Cross; 2007
  • 54 Hall MP, Band PA, Meislin RJ, Jazrawi LM, Cardone DA. Platelet-rich plasma: current concepts and application in sports medicine. J Am Acad Orthop Surg 2009; 17 (10) 602-608
  • 55 Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci 2008; 13: 3532-3548
  • 56 Qureshi AH, Chaoji V, Maiguel D , et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS ONE 2009; 4 (10) e7627
  • 57 Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol 2009; 16 (5) 329-333
  • 58 Mishra A, Tummala P, King A , et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng Part C Methods 2009; 15 (3) 431-435
  • 59 Akeda K, An HS, Okuma M , et al. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis Cartilage 2006; 14 (12) 1272-1280
  • 60 Kon E, Mandelbaum B, Buda R , et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthroscopy 2011; 27 (11) 1490-1501
  • 61 Filardo G, Kon E, Buda R , et al. Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011; 19 (4) 528-535
  • 62 Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M. State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 2011; 5 (4) e36-e51
  • 63 Toghraie FS, Chenari N, Gholipour MA , et al. Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee 2011; 18 (2) 71-75
  • 64 Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 2006; 8 (1) 112-125
  • 65 Koga H, Muneta T, Nagase T , et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008; 333 (2) 207-215
  • 66 Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 1998; 4 (4) 429-444
  • 67 Kuroda R, Ishida K, Matsumoto T , et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 2007; 15 (2) 226-231