Horm Metab Res 2014; 46(04): 240-244
DOI: 10.1055/s-0033-1357161
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Rosiglitazone is Effective to Improve Renal Damage in Type-1-like Diabetic Rats

K-C. Huang*
1   Department of Nephrology, Chi-Mei Medical Center, Liou Ying, Tainan City, Taiwan
,
Y-G. Cherng*
2   Department of Anesthesiology, Shuang Ho Hospital, New Taipei City, and Department of Anesthesiology, College of Medicine, Taipei Medical University, Taiwan
,
L-J. Chen
3   Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
,
C-T. Hsu
4   Department of Pathology, Edah University Medical Center, Yanchao, Kaohsiung City, Taiwan
,
J-T. Cheng
5   Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan
6   Institute of Medical Science, Chang Jung Christian University, Guei-Jen, Tainan City, Taiwan
› Author Affiliations
Further Information

Publication History

received 17 August 2013

accepted 12 September 2013

Publication Date:
17 October 2013 (online)

Abstract

A marked decrease of klotho expression was observed in the kidney of streptozotocin-induced diabetic rats (STZ rats) showing diabetic nephropathy. It has been documented that klotho is the target gene of PPARγ. However, the effect of PPARγ agonist on klotho expression in kidney of STZ rats remains obscure. Thus, we used rosiglitazone (TZD) as PPARγ agonist to investigate the effect on renal dysfunction in STZ rats. Treatment of TZD reversed the lower levels of PPARγ, klotho, and FGFR1 expressions in kidneys of STZ rats without the correction of hyperglycemia. Also, renal functions and structural defeats were improved by TZD treatment. Taken together, oral administration of TZD may improve STZ-induced diabetic nephropathy due to restoration of the expression of klotho axis through an increase in PPARγ expression without changing blood glucose in rats.

* Equal contribution in this study.


 
  • References

  • 1 Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390: 45-51
  • 2 Kuro-o M. Klotho in chronic kidney disease – what’s new?. Nephrol Dial Transplant 2009; 24: 1705-1708
  • 3 Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 2007; 194: 1-10
  • 4 Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibro­blast growth factor-23 signaling by klotho. J Biol Chem 2006; 281: 6120-6123
  • 5 Cheng MF, Chen LJ, Cheng JT. Decrease of Klotho in the kidney of streptozotocin-induced diabetic rats. J Biomed Biotechnol 2010; 2010 513853
  • 6 Laroche M, Boyer JF, Jahafar H, Allard J, Tack I. Normal FGF23 levels in adult idiopathic phosphate diabetes. Calcif Tissue Int 2009; 84: 112-117
  • 7 Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA, Kuro-o M. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011; 286: 8655-8665
  • 8 Campanholle G, Ligestri G, Gharib SA, Duffield JS. Cellular Mechanisms of Tissue Fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol 2013; 304: C591-C603
  • 9 Kim H, Haluzik M, Gavrilova O, Yakar S, Portas J, Sun H, Pajvani UB, Scherer PE, LeRoith D. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes. Diabetologia 2004; 47: 2215-2225
  • 10 Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions?. Diabetes 2004; 53: 1052-1059
  • 11 Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahli W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 2006; 58: 726-741
  • 12 White AT, Murphy AN. Administration of thiazolidinediones for neuroprotection in ischemic stroke: a pre-clinical systematic review. J Neurochem 2010; 115: 845-853
  • 13 Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, Chien S, Wang N. Klotho is a target gene of PPAR-gamma. Kidney Int 2008; 74: 732-739
  • 14 Cheng JT, Huang CC, Liu IM, Tzeng TF, Chang CJ. Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 2006; 55: 819-825
  • 15 Liu GY, An ZM. Protective effect of rosiglitazone sodium on islet beta-cell of STZ induced diabetic rats through JNK pathway. Sichuan da xue xue bao Yi xue ban [Journal of Sichuan University Medical Science Edition] 2009; 40: 430-434
  • 16 Tikellis C, Jandeleit-Dahm KA, Sheehy K, Murphy A, Chin-Dusting J, Kling D, Sebokova E, Cooper ME, Mizrahi J, Woollard KJ. Reduced plaque formation induced by rosiglitazone in an STZ-diabetes mouse model of atherosclerosis is associated with downregulation of adhesion molecules. Atherosclerosis 2008; 199: 55-64
  • 17 Krentz A. Thiazolidinediones: effects on the development and progression of type 2 diabetes and associated vascular complications. Diabetes Metab Rev 2009; 25: 112-126
  • 18 Sundararajan S, Gamboa JL, Victor NA, Wanderi EW, Lust WD, Landreth GE. Peroxisome proliferator-activated receptor-gamma ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 2005; 130: 685-696
  • 19 Luo Y, Yin W, Signore AP, Zhang F, Hong Z, Wang S, Graham SH, Chen J. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. J Neurochem 2006; 97: 435-448
  • 20 Ye JM, Doyle PJ, Iglesias MA, Watson DG, Cooney GJ, Kraegen EW. Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 2001; 50: 411-417
  • 21 Bhatia V, Viswanathan P. Insulin resistance and PPAR insulin sensitizers. Curr Opin Investig Drugs 2006; 7: 891-897
  • 22 Dumasia R, Eagle KA, Kline-Rogers E, May N, Cho L, Mukherjee D. Role of PPAR-gamma agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals: a cardiovascular perspective. Curr Drug Targets Cardiovasc Haematol Disord 2005; 5: 377-386
  • 23 Brunmair B, Staniek K, Lehner Z, Dey D, Bolten CW, Stadlbauer K, Luger A, Furnsinn C. Lipophilicity as a determinant of thiazolidinedione action in vitro: findings from BLX-1002, a novel compound without affinity to PPARs. Am J Physiol Cell Physiol 2011; 300: C1386-C1392
  • 24 Kagechika H, Miyachi H. PPARs as molecular targets for drug discovery. Nihon Rinsho [Japn J Clin Med] 2005; 63: 549-555
  • 25 Luippold G, Klein T, Mark M, Grempler R. Empagliflozin, a novel potent and selective SGLT-2 inhibitor, improves glycaemic control alone and in combination with insulin in streptozotocin-induced diabetic rats, a model of type 1 diabetes mellitus. Diabetes Obes Metab 2012; 14: 601-607
  • 26 Menne J, Shushakova N, Bartels J, Kiyan Y, Laudeley R, Haller H, Park JK, Meier M. Dual inhibition of classical protein kinase C-alpha and protein kinase C-beta isoforms protects against experimental murine diabetic nephropathy. Diabetes 2013; 62: 1167-1174
  • 27 Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med 2012; 12: 265-272
  • 28 Ebenezer PJ, Mariappan N, Elks CM, Haque M, Francis J. Diet-induced renal changes in Zucker rats are ameliorated by the superoxide dismutase mimetic TEMPOL. Obesity (Silver Spring) 2009; 17: 1994-2002
  • 29 Zhang Y, Guan Y. PPAR-gamma agonists and diabetic nephropathy. Curr Diabetes Rep 2005; 5: 470-475
  • 30 Guan Y. Peroxisome proliferator-activated receptor family and its relationship to renal complications of the metabolic syndrome. J Am Soc Nephrol 2004; 15: 2801-2815
  • 31 Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. American journal of physiology Renal Physiol 2007; 292: F1141-F1150
  • 32 Haruna Y, Kashihara N, Satoh M, Tomita N, Namikoshi T, Sasaki T, Fujimori T, Xie P, Kanwar YS. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc Natl Acad Sci USA 2007; 104: 2331-2336
  • 33 Sugiura H, Yoshida T, Tsuchiya K, Mitobe M, Nishimura S, Shirota S, Akiba T, Nihei H. Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant 2005; 20: 2636-2645
  • 34 Cheng MF, Chen LJ, Wang MC, Hsu CT, Cheng JT. Decrease of FGF Receptor (FGFR) and Interstitial Fibrosis in the Kidney of Streptozotocin-induced Diabetic Rats. Horm Metab Res 2013 July 4 [Epub ahead of print]
  • 35 Iglesias P, Selgas R, Romero S, Diez JJ. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Europ J Endocrinol 2012; 167: 301-309
  • 36 Bostrom MA, Hicks PJ, Lu L, Langefeld CD, Freedman BI, Bowden DW. Association of polymorphisms in the klotho gene with severity of non-diabetic ESRD in African Americans. Nephrol Dial Transplant 2010; 25: 3348-3355
  • 37 Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB. The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury. J Am Soc Nephrol 2009; 20: 2380-2388
  • 38 Lachinani L, Ghaedi K, Tanhaei S, Salamian A, Karamali F, Kiani-Esfahani A, Rabiee F, Yaghmaei P, Baharvand H, Nasr-Esfahani MH. Characterization and Functional Assessment of Mouse PPARgamma1 Promoter. Avicenna journal of medical biotechnology 2012; 4: 160-169
  • 39 Zhang H, Xu X, Chen L, Chen J, Hu L, Jiang H, Shen X. Molecular determinants of magnolol targeting both RXRalpha and PPARgamma. PloS one 2011; 6: e28253
  • 40 Lemay DG, Hwang DH. Genome-wide identification of peroxisome proliferator response elements using integrated computational genomics. J Lipid Res 2006; 47: 1583-1587
  • 41 MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Ann Rev Biochem 1995; 64: 345-373
  • 42 Fang XL, Shu G, Zhang ZQ, Wang SB, Zhu XT, Gao P, Xi QY, Zhang YL, Jiang QY. Roles of alpha-linolenic acid on IGF-I secretion and GH/IGF system gene expression in porcine primary hepatocytes. Mol Biol Rep 2012; 39: 10987-10996