B&G Bewegungstherapie und Gesundheitssport 2014; 30(04): 179-182
DOI: 10.1055/s-0034-1384422
Praxis
Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG Stuttgart

Bewegungsempfehlungen bei Chemotherapieinduzierter peripherer Polyneuropathie

F Streckmann
1   Deutsche Sporthochschule Köln, Institut für Kreislaufforschung und Sportmedizin (Abt. II)
,
J Rittweger
2   Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Luft- und Raumfahrtmedizin
,
W Bloch
1   Deutsche Sporthochschule Köln, Institut für Kreislaufforschung und Sportmedizin (Abt. II)
,
F T Baumann
1   Deutsche Sporthochschule Köln, Institut für Kreislaufforschung und Sportmedizin (Abt. II)
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
20. August 2014 (online)

Zusammenfassung

Die Chemotherapie-induzierte periphere Polyneuropathie (CIPN) ist eine der relevantesten Therapie-assoziierten Nebenwirkungen. Sie führt zu motorischen und sensorischen Dysfunktionen, die zum einen die Lebensqualität der Patienten reduzieren und zum anderen die medizinische Therapie beeinträchtigen. Derzeit besteht kein effektives Behandlungskonzept zur Behandlung der CIPN. Vielversprechend ist derzeit die Sporttherapie. Basierend auf dem aktuellsten wissenschaftlichen Stand bieten sowohl Sensomotoriktraining als auch Vibrationstraining das Potenzial, motorische und sensorische Symptome der CIPN zu reduzieren.

Summary

Physical activity recommendations for chemotherapy-induced peripheral neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most relevant side-effects of cancer therapy. It can cause sensory and motor impairments that not only reduce patients’ quality of life but also influence the medical therapy. To date there is no consensus regarding the therapy of CIPN. Exercise therapy has recently proven to be a promising method to target the relevant symptoms of CIPN. According to the state of the art, sensorimotor training as well as whole body vibration for instance, can induce significant reductions of sensory and motor symptoms of CIPN.

 
  • Literatur

  • 1 Abercromby AF, Amonette WE, Layne CS et al. Vibration exposure and biodynamic responses during whole-body vibration training. Med Sci Sports Exerc 2007; 39: 1794-1800
  • 2 Albers JW, Chaudhry V, Cavaletti G et al. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2011; CD005228
  • 3 Ang CD, Alviar MJ, Dans AL et al. Vitamin B for treating peripheral neuropathy. Cochrane Database Syst Rev 2008; CD004573
  • 4 Antoine JC, Camdessanche JP. Peripheral nervous system involvement in patients with cancer. Lancet Neurol 2007; 6: 75-86
  • 5 Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold?. Int Rev Neurobiol 2002; 50: 393-413
  • 6 Beijer A, Rosenberger A, Weber T et al. Randomized controlled study on resistive vibration exercise (EVE study): protocol, implementation and feasibility. J Musculoskelet Neuronal Interact 2013; 13: 147-156
  • 7 Blottner D, Salanova M, Puttmann B et al. Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol 2006; 97: 261-271
  • 8 Bogaerts A, Delecluse C, Boonen S et al. Changes in balance, functional performance and fall risk following whole body vibration training and vitamin D supplementation in institutionalized elderly women. A 6 month randomized controlled trial. Gait Posture 2011; 33: 466-472
  • 9 Bühring B, Belavy DL. Changes in lower extremity muscle function after 56 days of bed rest. J Appl Physiol 2011; 111: 87-94
  • 10 Cochrane DJ, Loram ID, Stannard SR et al. Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration. Muscle Nerve 2009; 40: 420-429
  • 11 Cochrane DJ. Vibration exercise: the potential benefits. Int J Sports Med 2011; 32: 75-99
  • 12 Freeman MA, Dean MR, Hanham IW. The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br 1965; 47: 678-685
  • 13 Gollhofer A. Proprioceptive training: considerations for strength and power production. In: Komi PVK. Hrsg. Strength and Power in Sport. 2. Aufl. Oxford: Blackwell Publishing; 2003: 331-342
  • 14 Granacher U, Gollhofer A, Strass D. Training induced adaptations in characteristics of postural reflexes in elderly men. Gait Posture 2006; 24: 459-466
  • 15 Granacher U, Mühlbauer T, Taube W et al. Sensorimotor training. In: Cardinale M. Hrsg. Strength and conditioning: Biological principles and practical applications. San Francisco: Wiley; 2011: 399-409
  • 16 Granacher U. Neuromuskuläre Leistungungsfähigkeit im Alter.. Geislingen: C. Maurer Druck und Verlag; 2006
  • 17 Kaley TJ, Deangelis LM. Therapy of chemotherapy-induced peripheral neuropathy. Br J Haematol 2009; 145: 3-14
  • 18 Kawanabe K, Kawashima A, Sashimoto I et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly. Keio J Med 2007; 56: 28-33
  • 19 Kirchner E. Pflegerische Interventionen und Möglichkeiten bei krebstherapiebedingter Polyneuropathie. DLH-INFO 2008; 13: 19-21
  • 20 Koeppen S. Management der therapiebedingten Neurotoxizität – Taube Stellen, kribbelnde Finger – Nervenschäden gezielt vermeiden. Im Focus Onkologie 2007; 11: 64-70
  • 21 Lau RW, Liao LR, Yu F et al. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil 2011; 25: 975-988
  • 22 Lee K, Lee S, Song C. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy. Tohoku J Exp Med 2013; 231: 305-314
  • 23 Liedberg GM, Vrethem M. Polyneuropathy, with and without neurogenic pain, and its impact on daily life activities – a descriptive study. Disabil Rehabil 2009; 31: 1402-1408
  • 24 Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol 2002; 249: 9-17
  • 25 Rauch F, Sievanen H, Boonen S et al. Reporting whole-body vibration intervention studies: recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact 2010; 10: 193-198
  • 26 Richardson JK, Ashton-Miller JA. Peripheral neuropathy: an often-overlooked cause of falls in the elderly. Postgrad Med 1996; 99: 161-172
  • 27 Rittweger J, Beller G, Armbrecht G et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 2010; 46: 137-147
  • 28 Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol 2010; 108: 877-904
  • 29 Ritzmann R, Kramer A, Gollhofer A et al. The effect of whole body vibration on the H-reflex, the stretch reflex, and the short-latency response during hopping. Scand J Med Sci Sports 2013; 23: 331-339
  • 30 Salanova M, Schiffl G, Rittweger J et al. Ryanodine receptor type-1 (RyR1) expression and protein S-nitrosylation pattern in human soleus myofibres following bed rest and exercise countermeasure. Histochem Cell Biol 2008; 130: 105-118
  • 31 Sjostrom PJ, Rancz EA, Roth A et al. Dendritic excitability and synaptic plasticity. Physiol Rev 2008; 88: 769-840
  • 32 Spiliopoulou SI, Amiridis IG, Tsigganos G et al. Vibration effects on static balance and strength. Int J Sports Med 2010; 31: 610-616
  • 33 Steimann M, Kerschgens C, Barth J. Rehabilitation bei Chemotherapieinduzierter Polyneuropathie. Onkologe 2011; 17: 940-947
  • 34 Streckmann F, Kneis S, Leifert JA et al. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 2014; 25: 493-499
  • 35 Streckmann F, Zopf EM, Lehmann HC et al. Exercise intervention studies in patients with peripheral neuropathy – a systematic review. Sports Med 2014; accepted
  • 36 Stubblefield MD, Burstein HJ, Burton AW et al. NCCN task force report: management of neuropathy in cancer. J Natl Compr Canc Netw 2009; 7 (Suppl. 05) S1-S26 (Quiz 7–8)
  • 37 Taube W, Gruber M, Beck S et al. Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta Physiol 2007; 189: 347-358
  • 38 Taube W, Gruber M, Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta physiol 2008; 193: 101-116
  • 39 Taube W, Kullmann N, Leukel C et al. Differential reflex adaptations following sensorimotor and strength training in young elite athletes. Int J Sports Med 2007; 28: 999-1005
  • 40 Taube W. Neuronale Mechanismen der posturalen Kontrolle und der Einfluss von Gleichgewichtstraining. Neurol Neurochir Psych 2012; 13: 55-63
  • 41 Verhagen E, van der Beek A, Twisk J et al. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med 2004; 32: 1385-1393
  • 42 Vogt TK J, Barth J, Ingel K. Klinische Relevanz und Therapie von therapieassotiierten Polyneuropathien bei Patienten mit Tumorerkrankung Arbeitsgemeinschaft für Krebserkrankungen. Abschlussbericht 2010
  • 43 Wonders KY, Reigle BS, Drury DG. Treatment strategies for chemotherapy-induced peripheral neuropathy: potential role of exercise. Oncol Rev 2010; 4: 117-125