Synlett 2015; 26(17): 2437-2441
DOI: 10.1055/s-0035-1560572
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of the C27–C48 Moiety of Aflastatin A by a Carbohydrate Strategy Using a Tin(II)-Mediated Aldol Reaction

Sawato Murakoshi
Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: e-mail_seijiro@waseda.jp
,
Seijiro Hosokawa*
Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan   Email: e-mail_seijiro@waseda.jp
› Author Affiliations
Further Information

Publication History

Received: 22 July 2015

Accepted after revision: 12 August 2015

Publication Date:
14 September 2015 (online)


Abstract

The C27–C48 segment of aflastatin A was synthesized by using d-mannoside and l-erythrulose derivatives as chiral building blocks. The aldol reaction of undecan-2-one with mannolactone and a subsequent reduction gave the C37 and C39 stereogenic centers with high selectivity. Another aldol reaction of a tin(II) enolate of a protected erythrulose (C27–C30 segment) with a C31–C48 aldehyde segment gave the C30,C31-syn adduct with the desired stereochemistry. Deprotection of the assembled product proceeded smoothly to give the C27–C48 segment of aflastatin A containing a contiguous polyol moiety.

Supporting Information

 
  • References and Notes

    • 1a Sakuda S, Ono M, Furihata K, Nakayama J, Suzuki A, Isogai A. J. Am. Chem. Soc. 1996; 118: 7855
    • 1b Ono M, Sakuda S, Suzuki A, Isogai A. J. Antibiot. 1997; 50: 111
    • 1c Ikeda H, Matsumori N, Ono M, Suzuki A, Isogai A, Nagasawa H, Sakuda S. J. Org. Chem. 2000; 65: 438
    • 1d Kondo T, Sakurada M, Okamoto S, Ono M, Tsukigi H, Suzuki A, Nagasawa H, Sakuda S. J. Antibiot. 2001; 54: 650
    • 1e Sakuda S, Matsumori N, Furihata K, Nagasawa H. Tetrahedron Lett. 2007; 48: 2527

      For synthetic studies on aflastatin A, see:
    • 2a Evans DA, Glorius F, Burch JD. Org. Lett. 2005; 7: 3331
    • 2b Evans DA, Trenkle WC, Zhang J, Burch JD. Org. Lett. 2005; 7: 3335
    • 2c Robles O, McDonald FE. Org. Lett. 2008; 10: 1811
    • 2d Narute SB, Kiran NC, Ramana CV. Org. Biomol. Chem. 2011; 9: 5469
    • 2e Narute SB, Ramana CV. Tetrahedron 2013; 69: 1830

    • For a total synthesis of aflastatin A, see:
    • 2f Beiger JJ. Ph.D. Thesis. Harvard University; USA: 2013
    • 3a Hosokawa S, Tatsuta K. Mini-Rev. Org. Chem. 2008; 5: 1
    • 3b Hosokawa S. Yuki Gosei Kagaku Kyokaishi 2009; 67: 24
    • 3c Hosokawa S, Mukaeda Y, Kawahara R, Tatsuta K. Tetrahedron Lett. 2009; 50: 6701
    • 3d Hosokawa S, Matsushita K, Tokimatsu S, Toriumi T, Suzuki Y, Tatsuta K. Tetrahedron Lett. 2010; 51: 5532
    • 3e Nakamura T, Harachi M, Kano T, Mukaeda Y, Hosokawa S. Org. Lett. 2013; 15: 3170
    • 3f Takahashi Y, Otsuka M, Harachi M, Mukaeda Y, Hosokawa S. Org. Lett. 2014; 16: 4106
    • 3g Kato T, Sato T, Kashiwagi Y, Hosokawa S. Org. Lett. 2015; 17: 2274
  • 4 Mukherjee C, Ghosh S, Nandi P, Sen PC, Misra AK. Eur. J. Med. Chem. 2010; 45: 6012
    • 5a Aspinall GO, McDonald AG, Sood RK. Can. J. Chem. 1994; 72: 247
    • 5b Miquel N, Doisneau G, Beau J.-M. Angew. Chem. Int. Ed. 2000; 39: 4111
    • 6a Evans DA, Chapman KT. Tetrahedron Lett. 1986; 27: 5939
    • 6b Evans DA, Chapman KT, Carreira EM. J. Am. Chem. Soc. 1988; 110: 3560
    • 7a Kawahara T, Izumikawa M, Takagi M, Shin-ya K. Org. Lett. 2012; 14: 4434
    • 7b Mikami Y, Komaki H, Imai T, Yazawa K, Nemoto A, Tanaka Y, Gräefe U. J. Antibiot. 2000; 53: 70
    • 7c Murata H, Ohama I, Harada K, Suzuki M, Ikemoto T, Shibuya T, Haneishi T, Torikata A, Itezono Y, Nakayama N. J. Antibiot. 1995; 48: 850
  • 8 Takano S, Kurotaki A, Sekiguchi Y, Satoh S, Hirama M, Ogasawara K. Synthesis 1986; 811
  • 9 Hobley G, Stuttle K, Wills M. Tetrahedron 2003; 59: 4739
  • 10 Mikkelsen LM, Krintel SL, Jiménez-Barbero J, Skrydstrup T. J. Org. Chem. 2002; 67: 6297
    • 11a Murga J, Falomir E, González F, Carda M, Marco JA. Tetrahedron 2002; 58: 9697
    • 11b Marco JA, Murga J, Carda M, Díaz-Oltra S, Murga J, Falomir E, Roeper H. J. Org. Chem. 2003; 68: 8577
  • 12 For the determination of the absolute stereochemistry of 15a and 15b, see the Supporting Information.
    • 13a Nerz-Stormes M, Thornton E. Tetrahedron Lett. 1986; 27: 897
    • 13b Kamino T, Murata Y, Kawai N, Hosokawa S, Kobayashi S. Tetrahedron Lett. 2001; 42: 5249
    • 13c Murata Y, Kamino T, Hosokawa S, Kobayashi S. Tetrahedron Lett. 2002; 43: 8121
    • 13d Murata Y, Kamino T, Aoki T, Hosokawa S, Kobayashi S. Angew. Chem. Int. Ed. 2004; 43: 3175
  • 14 The absolute configurations of the undesired anti-adducts were not determined. These configurations and details of the (i-PrO)3TiCl-mediated aldol reaction between contiguous polyol ketones and aldehydes will be reported somewhere.
    • 15a Hedenström E, Anderson F, Hjalmarsson M. J. Chem. Soc. Perkin Trans. 1 2000; 1513
    • 15b Yasuda M, Okamoto K, Sako T, Baba A. Chem. Commun. 2001; 157
  • 16 Gribble GW. Org. Process Res. Dev. 2006; 10: 1062
  • 17 For the determination of the absolute configuration of 19, see the Supporting Information.
  • 18 C27–C48 Fragment 2 20% Pd(OH)2/C (1.0 mg) was added to a solution of compound 20 (4.2 mg, 3.9 μmol) in THF (1.0 mL), and the mixture was stirred for 13 h under H2. The mixture was filtered through a pad of Celite and the filtrate was concentrated in vacuo. The residue was purified by column chromatography [silica gel, CHCl3–MeOH (1:1)] to give a white solid; yield: 1.7 mg (3.5 μmol, 90%); mp 126–127 °C; Rf = 0.30 (CHCl3–MeOH, 1:1); [α]D 25 +13.8 (c 1.34, MeOH). IR (thin film, KBr): 3535, 3073, 2959, 2924, 1260, 1124, 796, 668 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 6.16–6.12 (br s, 1 H), 5.26 (d, J = 3.9 Hz, 1 H), 4.59 (d, J = 5.2 Hz, 1 H), 4.54 (d, J = 5.2 Hz, 1 H), 4.49 (dd, J = 5.6, 5.6 Hz, 1 H), 4.48 (d, J = 4.1 Hz, 1 H), 4.37 (d, J = 5.2 Hz, 1 H), 4.17 (d, J = 5.0 Hz, 1 H), 4.16 (d, J = 5.0 Hz, 1 H), 4.11 (d, J = 6.1 Hz, 1 H), 3.94–3.81 (m, 2 H), 3.63 (ddd, J = 9.8, 9.8, 3.8 Hz, 1 H), 3.61–3.53 (m, 3 H), 3.48–3.34 (m, 4 H), 3.19 (ddd, J = 9.2, 9.2, 5.6 Hz, 1 H), 2.09–2.01 (m, 1 H), 1.86–1.79 (m, 1 H), 1.53–1.38 (m, 2 H), 1.37–1.15 (m, 16 H), 0.85 (t, J = 6.9 Hz, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 98.4, 73.1, 71.9, 71.7, 71.3, 70.7, 70.2, 69.3, 67.4, 62.8, 41.6, 38.2, 35.8, 31.3, 29.2, 29.1, 29.0, 28.7, 24.8, 22.1, 14.0. HRMS (ESI): m/z [M + Na]+calcd for C22H44NaO11: 507.2776; found: 507.2778.