Synlett 2015; 26(19): 2685-2689
DOI: 10.1055/s-0035-1560590
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Silylcyclopropanes through the Catalytic Generation of Zinc Silylcarbenoids from Enynones

Sergio Mata
Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain   Email: lalg@uniovi.es   Email: vicenteruben@uniovi.es
,
Luis A. López*
Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain   Email: lalg@uniovi.es   Email: vicenteruben@uniovi.es
,
Rubén Vicente*
Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica ‘Enrique Moles’, Universidad de Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain   Email: lalg@uniovi.es   Email: vicenteruben@uniovi.es
› Author Affiliations
Further Information

Publication History

Received: 03 July 2015

Accepted after revision: 21 October 2015

Publication Date:
06 November 2015 (online)


Dedicated to Professor Antonio Echavarren on the occasion of his 60th birthday

Abstract

A simple methodology for the preparation of 1-furyl-1-(silyl)cyclopropanes is reported. ZnCl2 serves as inexpensive, low-toxicity catalyst for the generation of silylcarbenes from enynones, which can be trapped by alkenes under mild reaction conditions. These cyclopropanations take place in high yields and selectivities, showing a remarkable scope.

Supporting Information

 
  • References and Notes

    • 1a Ojima I, Li Z, Zhu J In The Chemistry of Organic Silicon Compounds. Rappoport Z, Apeloig Y. Wiley; Chichester: 1998
    • 1b Auner N, Weis J. Organosilicon Chemistry. Wiley-VCH; Weinheim: 2003
    • 1c Fuchs PL. Handbook of Reagents for Organic Synthesis, Reagents for Silicon-Mediated Organic Synthesis. Wiley-VCH; Weinheim: 2011
    • 2a Paquette LA. Chem. Rev. 1986; 86: 733
    • 2b Krief A. Top. Curr. Chem. 1987; 135: 1

      For using Simmons–Smith-type carbenoids, see:
    • 3a Seyferth D, Cohen HM. Inorg. Chem. 1962; 1: 913
    • 3b Simmons HE, Cairns TL, Vladuchick SA, Hoiness CM. Org. React. (N. Y.) 1973; 20: 1

    • Low yields were commonly obtained due to steric hindrance. Improvements by using alkenes bearing an oxygen-directing group were described, see:
    • 3c Hirabayashi K, Mori A, Hiyama T. Tetrahedron Lett. 1997; 38: 461
    • 3d Imai N, Sakamoto K, Takahashi H, Kobayashi S. Tetrahedron Lett. 1994; 35: 7045

      For representative examples using metal carbenoids derived from diazo compounds, see:
    • 4a Nasim M, Petrosyan VS, Zaitseva GS, Lorberth J. J. Organomet. Chem. 1992; 430: 269
    • 4b Berthon-Gelloz G, Marchant M, Straub BF, Marko IE. Chem. Eur. J. 2009; 15: 2923
    • 5a Sternberg E, Binger P. Tetrahedron Lett. 1985; 26: 301
    • 5b Ahra M, Grignon-Dubois M, Dunoguès J. J. Organomet. Chem. 1984; 271: 15
    • 6a Seyferth D, Dow AW, Menzel H, Flood TC. J. Am. Chem. Soc. 1969; 90: 1080
    • 6b Hazeldine RN, Scott DL, Titwine AE. J. Chem. Soc., Perkin Trans. 1 1974; 1440
    • 6c Daniels RG, Paquette LA. J. Org. Chem. 1981; 46: 2901
    • 6d Taylor RT, Paquette LA. J. Org. Chem. 1978; 43: 242
    • 6e Ashe AJ. J. Am. Chem. Soc. 1973; 95: 818
  • 7 Olofson RA, Hoskin DH, Lotts KD. Tetrahedron Lett. 1978; 1677
    • 8a Takai K, Hirano M, Toshikawa S. Synlett 2004; 1347
    • 8b Takai K, Toshikawa S, Inoue A, Kokumai R, Hirano M. J. Organomet. Chem. 2007; 692: 520
    • 8c Concellón JM, Rogríguez-Solla H, Méjica C, Blanco EG, García-Granda S, Díaz MR. Org. Lett. 2008; 10: 349
  • 9 For strategies not involving carbene-like precursors, see ref. 2a.
    • 10a Seyferth D, Hanson EM. J. Organomet. Chem. 1971; 27: 10
    • 10b Schollkopf U, Rieber N. Angew. Chem. 1967; 79: 906
    • 10c Schollkopf U, Hoppe D, Rieber N, Jacobi V. Justus Liebigs Ann. Chem. 1969; 730
  • 11 Aoyama T, Shioiri T. Science of Synthesis. Vol. 4. Fleming I. Thieme; Stuttgart: 2002: 569

    • For the preparation of (TMS)phosphinocarbenes, see:
    • 12a Goumri-Magnet S, Kato T, Gornitzka H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 2000; 122: 4464
    • 12b Krysiak J, Lyon C, Baceiredo A, Gornitzka H, Mikolajczyk M, Bertrand G. Chem. Eur. J. 2004; 10: 1982
    • 12c For (TMS)thiodiazomethane derivatives, see: Wagner T, Lange J, Grote D, Sander W, Schaumann E, Adiwidjaja G, Adam A, Kopf J. Eur. J. Org. Chem. 2009; 30: 5198
    • 13a Vicente R, González J, Riesgo L, González J, López LA. Angew. Chem. Int. Ed. 2012; 51: 8063
    • 13b González J, López LA, Vicente R. Chem. Commun. 2014; 50: 8536
    • 13c González MJ, López LA, Vicente R. Org. Lett. 2014; 16: 5780
    • 13d Mata S, López LA, Vicente R. Chem. Eur. J. 2015; 21: 8998
    • 13e González MJ, González J, López LA, Vicente R. Angew. Chem. Int. Ed. 2015; 54: 12139
    • 14a Mukherjee A, Sen TK, Ghorai PK, Samuel PP, Schulzke C, Mandal SK. Chem. Eur. J. 2012; 18: 10530
    • 14b For a review, see: González MJ, López LA, Vicente R. Tetrahedron Lett. 2015; 56: 1600

      For representative examples dealing with the generation of furylcarbenes from enynones with other metals, see:
    • 15a Iwasawa N, Shido M, Kusama H. J. Am. Chem. Soc. 2001; 123: 5814
    • 15b Casey CP, Strotman NA, Guzei IA. Organometallics 2004; 23: 4121
    • 15c Hu F, Xia Y, Ma C, Zhang Y, Wang J. Org. Lett. 2014; 16: 4082
    • 15d For a review, see: Kusama H, Iwasawa N. Chem. Lett. 2006; 35: 1082
    • 15e For an acid-promoted reaction, see: Clark JS, Romiti F, Hogg KF, Hamid MH. S. A, Richter SC, Boyer A, Redman JC, Farrugia LJ. Angew. Chem. Int. Ed. 2015; 54: 5744
  • 16 Representative Procedure: To a solution of enynone 1 (0.30 mmol) and alkene 2 (1.8 mmol, 6.0 equiv) in 1,2-dichloroethane (3.0 mL, 0.10 M), ZnCl2 (4.0 mg, 10 mol%) was added at ambient temperature. The Schlenk flask was placed in a preheated oil bath at 50 °C and the reaction mixture was stirred until consumption of 1 (TLC analysis). After elimination of the solvent, purification by flash column chromatography (SiO2, hexane–EtOAc) afforded the corresponding cyclopropanes 3. Characterization data for compound 3a: 1H NMR (300 MHz, CDCl3): δ = 7.05–7.23 (m, 3 H), 6.92–7.03 (m, 2 H), 5.86 (s, 1 H), 2.37 (s, 3 H), 2.34 (dd, J = 7.9, 6.1 Hz, 1 H), 2.25 (s, 3 H), 1.63 (dd, J = 6.0, 4.8 Hz, 1 H), 1.39 (dd, J = 7.8, 4.8 Hz, 1 H), 0.09 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 194.4 (C), 156.6 (C), 153.9 (C), 138.3 (C), 127.9 (CH), 127.6 (CH), 125.9 (CH), 121.6 (C), 107.5 (CH), 29.0 (Me), 26.9 (CH), 17.7 (C), 15.1 (CH2), 14.2 (Me), –2.9 (Me). HRMS (ESI): m/z [M]+ calcd for C19H24O2Si: 312.1546; found: 312.1543.
  • 17 The trans configuration of cyclopropanes 3 was established by NOESY experiments and was not affected during the purification.
  • 18 Higher temperatures or longer reaction times did not influence the yield.
  • 19 In the presence of 1-heptene, aryl-substituted enynones underwent a zinc-carbene dimerization, while alkyl-substituted enynones gave rise to complex mixtures.
  • 20 The use of butyl vinyl ether led to polymerization of the alkene.
    • 21a For the reactivity of enynones bearing other substituents with related 1,3-diene derivatives, see: Song B, Li L.-H, Song X.-R, Qiu Y.-F, Zhong M.-J, Zhou P.-X, Liang Y.-M. Chem. Eur. J. 2014; 20: 5910
    • 21b Signals attributable to the silylcyclopropane were not observed by 1H NMR analysis. Nevertheless, formation of cyclopropane followed by ring expansion cannot be ruled out.

      For related silicon-to-carbon migrations of phenyl groups, see:
    • 22a Fleming I, Henning R, Plaut H. J. Chem. Soc., Chem. Commun. 1984; 29
    • 22b Shintani R, Fujie R, Takeda M, Nozaki K. Angew. Chem. Int. Ed. 2014; 53: 6546
  • 23 Unfortunately, attempts to obtain cyclopropanols by Tamao–Fleming oxidation (on compounds 3wx) through various standard procedures failed, leading to complex mixtures or hydrodesilylation product. Various attempts to perform Hiyama couplings were also unsuccessful.