Synthesis 2016; 48(11): 1597-1606
DOI: 10.1055/s-0035-1561586
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Meerwein Arylation Chemistry

Stephanie Kindt
Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany   Email: Markus.Heinrich@fau.de
,
Markus R. Heinrich*
Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstraße 19, 91052 Erlangen, Germany   Email: Markus.Heinrich@fau.de
› Author Affiliations
Further Information

Publication History

Received: 25 February 2016

Accepted after revision: 29 February 2016

Publication Date:
31 March 2016 (online)


Abstract

The Meerwein arylation has recently received much attention and a variety of new variants have been developed. Advances include new sources for aryl radicals, new radical scavengers, as well as improved reaction conditions. This short review summarizes important developments that make this radical-type reaction an even more powerful tool for the diverse functionalization of alkenes.

1 Introduction

2 Meerwein Arylations

2.1 Carboarylation

2.2 Carboamination

2.3 Carbooxygenation

2.4 Carbothiolation

2.5 Carbofluorination

3 Summary

 
  • References

  • 1 Meerwein H, Büchner E, v. Emster K. J. Prakt. Chem. 1939; 152: 237

    • For review articles, see:
    • 2a Rondestvedt CS. Org. React. 1976; 24: 225
    • 2b Heinrich MR. Chem. Eur. J. 2009; 15: 820
    • 2c Vaillard SE, Schulte B, Studer A In Modern Arylation Methods . Ackermann L. Wiley-VCH; Weinheim: 2009: 475
    • 2d Pratsch G, Heinrich MR. Radicals in Synthesis III . In Topics in Current Chemistry . Vol. 320. Gansäuer A, Heinrich MR. Springer; Heidelberg: 2012: 61
    • 2e Fehler SK, Heinrich MR. Synlett 2015; 26: 580
    • 3a Walters WA In The Chemistry of Free Radicals . Wiley; Boca Raton: 1967
    • 3b Zollinger H. Acc. Chem. Res. 1973; 6: 335
    • 3c Cohen T, Lewarchik RJ, Tarino JZ. J. Am. Chem. Soc. 1974; 96: 7753
    • 3d Cohen T, Dietz AG, Miser JR. J. Org. Chem. 1977; 42: 2053
    • 3e Reszka KJ, Chignell CF. J. Am. Chem. Soc. 1993; 115: 7752
    • 3f Bonin H, Sauthier M, Felpin FX. Adv. Synth. Catal. 2014; 356: 635
  • 4 Galli C. Chem. Rev. 1988; 88: 765
    • 5a Goez M, Eckert G, Müller U. J. Phys. Chem. A 1999; 103: 5714
    • 5b Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2013; 15: 4398
    • 5c Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052

      For organotin-mediated atom-transfer reactions, see:
    • 6a Curran DP, Jasperse CP, Totleben MJ. J. Org. Chem. 1991; 56: 7169
    • 6b Jasch H, Heinrich MR In Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C, Studer A. Wiley; Chichester: 2012

      For atom transfer with alternative reagents, see:
    • 7a Chatgilialoglu C. Chem. Eur. J. 2008; 14: 2310
    • 7b Chatgilialoglu C. Chem. Rev. 1995; 95: 1229
    • 7c Baguley PA, Walton JC. Angew. Chem. Int. Ed. 1998; 37: 3072
    • 7d Molander GA, Haring LS. J. Org. Chem. 1990; 55: 6171
    • 7e Curran DP, Fevig TL, Totleben ML. Synlett 1990; 773
    • 7f Inanaga J, Ujikawa O, Yamaguchi M. Tetrahedron Lett. 1991; 32: 1737
    • 7g Curran DP, Totleben MJ. J. Am. Chem. Soc. 1992; 114: 6050

      For atom transfer under electrochemical and photochemical conditions, see:
    • 8a Combellas C, Marzouk H, Suba C, Thiebault A. Synthesis 1993; 788
    • 8b Chami Z, Gareil M, Pinson J, Saveant JM, Thiebault A. Tetrahedron Lett. 1988; 29: 639
    • 8c Donnelly S, Grimshaw J, Trocha-Grimshaw J. Electrochim. Acta 1996; 41: 489
    • 8d Donnelly S, Grimshaw J, Trocha-Grimshaw J. J. Chem. Soc., Chem. Commun. 1994; 2171
    • 8e Liu Q, Han B, Zhang W, Yang L, Liu Z.-L, Yu W. Synlett 2005; 2248
    • 8f Boisvert G, Giasson R. Tetrahedron Lett. 1992; 33: 6587
    • 8g Abeywickrema AN, Beckwith AL. J. Tetrahedron Lett. 1986; 27: 109
    • 9a Demir AS, Reis Ö, Özgül-Karaaslan E. J. Chem. Soc., Perkin Trans. 1 2001; 3042
    • 9b Demir AS, Findik H. Tetrahedron 2008; 64: 6139
    • 9c Jasch H, Scheumann J, Heinrich MR. J. Org. Chem. 2012; 77: 10699
    • 9d Chen ZX, Wang GW. J. Org. Chem. 2005; 70: 2380
  • 10 Dickschat A, Studer A. Org. Lett. 2010; 12: 3972
    • 11a Kolb KE, Black WA. J. Chem. Soc. D 1969; 1119
    • 11b Kochi JK. J. Am. Chem. Soc. 1957; 79: 2942
    • 11c Park J, Jan M. Acc. Chem. Res. 2013; 46: 181
    • 12a Höfling SB, Bartuschat AL, Heinrich MR. Angew. Chem. Int. Ed. 2010; 49: 9769
    • 12b Jasch H, Höfling S, Heinrich MR. J. Org. Chem. 2012; 77: 1520
    • 13a Citterio A, Minisci F, Vismara E. J. Org. Chem. 1982; 47: 81
    • 13b Garden SJ, Avila DV, Beckwith AL. J, Bowry VW, Ingold KU, Lusztyk J. J. Org. Chem. 1996; 61: 805
    • 13c Blank O, Wetzel A, Ullrich D, Heinrich MR. Eur. J. Org. Chem. 2008; 3179

      For variety of suitable alkenes in CuCl2-mediated reactions, see:
    • 14a Mastrorilli P, Nobile CF, Taccardi N. Tetrahedron Lett. 2006; 47: 4759
    • 14b Gorbovoi PM, Tulaidan GN, Grishchuk GN. Russ. J. Gen. Chem. 2008; 78: 133
    • 14c Jenkins CL, Kochi JK. J. Org. Chem. 1971; 36: 3103
    • 14d Jenkins CL, Kochi JK. J. Am. Chem. Soc. 1972; 94: 856
    • 14e Dombrovskii AV, Yurkevich AM, Terentev AP. J. Gen. Chem. USSR 1957; 27: 3077
    • 14f Dombrovskii AV, Ganushchak NI. J. Gen. Chem. USSR 1961; 31: 1191
    • 14g Doyle MP, Siegfried B, Elliot RC, Dellaria JF. J. Org. Chem. 1977; 42: 2431

      For a carbooxygenation via path A (Scheme 1), see:
    • 16a Li F, Castle L. Org. Lett. 2007; 9: 4033
    • 16b Li F, Tartakoff SS, Castle SL. J. Org. Chem. 2009; 74: 9082
    • 17a Minisci F, Coppa F, Fontana F, Pianese G, Zhao L. J. Org. Chem. 1992; 57: 3929
    • 17b Molinaro C, Mowat J, Gosselin F, O’Shea PD, Marcoux J.-F, Angelaud R, Davies IW. J. Org. Chem. 2007; 72: 1856
    • 18a Murphy JA In Radicals in Organic Synthesis . Vol. 1. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001: 298
    • 18b Ryu I. Chem. Rec. 2002; 2: 249
    • 18c Godineau E, Landais Y. Chem. Eur. J. 2009; 15: 3044
    • 18d Du P, Li H, Wang Y, Cheng J, Wan X. Org. Lett. 2014; 16: 6350
    • 18e Hollister KA, Conner ES, Spell ML, Deveaux K, Maneval L, Beal MW, Ragains JR. Angew. Chem. Int. Ed. 2015; 54: 7837
    • 18f Majek M, Wangelin AJ. Angew. Chem. Int. Ed. 2015; 54: 2270
    • 18g Bashir N, Patro B, Murphy JA. Adv. Free Radical Chem. (Stamford, CT, U. S.) 1999; 2: 123
    • 19a Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 19b Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
    • 20a Kojima M, Oisaki K, Kanai M. Chem. Commun. 2015; 51: 9718
    • 20b Schroll P, Hari DP, König B. ChemistryOpen 2012; 1: 130 ; http://onlinelibrary.wiley.com/journal/10.1002/(ISSN) 2191-1363
    • 20c Lytvyn RZ, Neshchadin AO, Pitkovych KY, Horak YI, Grazulevicius JV, Lis T, Kinzhybalo V, Obushak MD. Tetrahedron Lett. 2016; 57: 118
  • 21 Obushak ND, Ganushchak NI, Matiichuk VS. Russ. J. Org. Chem. 1996; 32: 766
    • 22a Karlstrçm AS. E, Backvall JE. Chem. Eur. J. 2001; 7: 1981
    • 22b Corey EJ, Boaz NW. Tetrahedron Lett. 1984; 25: 3063
    • 22c Yamanaka M, Kato S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 6287
    • 22d Andrus MB, Argade AB, Chen X, Pamment MG. Tetrahedron Lett. 1995; 36: 2945
  • 23 Taniguchi T, Ishita A, Uchiyama M, Tamura O, Muraoka O, Tanabe G, Ishibashi H. J. Org. Chem. 2005; 70: 1922
  • 24 Taniguchi T, Iwasaki K, Uchiyama M, Tamura O, Ishibashi H. Org. Lett. 2005; 7: 4389
  • 25 Tang S, Zhou D, Wang Y.-C. Eur. J. Org. Chem. 2014; 3656
  • 26 For a copper-catalyzed version of the carboarylation leading to 3-alkyl-3-benzyloxindoles, see: Tang S, Zhou D, Deng YL, Li ZH, Yang Y, He JG, Wang YW. Sci. China: Chem. 2015; 58: 684
  • 27 Leardini R, Nanni D, Tundo A, Zanardi G. Synthesis 1988; 333
  • 28 Xiao T, Dong X, Tang Y, Zhou L. Adv. Synth. Catal. 2012; 354: 3195
    • 29a Togo H, Kikuchi O. Tetrahedron Lett. 1988; 29: 4133
    • 29b Togo H, Kikuchi O. Heterocycles 1989; 28: 373
  • 30 Jasch H, Landais Y, Heinrich MR. Chem. Eur. J. 2013; 19: 8411
    • 31a Newcomb M In Encyclopedia of Radicals in Chemistry, Biology and Materials . Vol. 1. Chatgilialoglu C, Studer A. Wiley-VCH; Weinheim: 2012: 107
    • 31b Johnston LJ, Lusztyk J, Wayner DD. M, Abeywickreyma AN, Beckwith AL. J, Scaiano JC, Ingold KU. J. Am. Chem. Soc. 1985; 107: 4594
  • 32 Heinrich MR, Blank O, Ullrich D, Kirschstein M. J. Org. Chem. 2007; 72: 9609
  • 33 Reprinted with permission from: Fehler SK, Heinrich MR. Synlett 2015; 26: 580; Copyright 2015, Georg Thieme Verlag, Stuttgart
    • 34a White DR, Hutt JT, Wolfe JP. J. Am. Chem. Soc. 2015; 137: 11246
    • 34b Schultz DM, Wolfe JP. Synthesis 2012; 44: 351
    • 34c Wolfe JP. Top. Heterocycl. Chem. 2013; 32: 1
    • 34d Mai DN, Wolfe JP. J. Am. Chem. Soc. 2010; 132: 12157
    • 34e Hopkins BA, Wolfe JP. Chem. Sci. 2014; 5: 4840
    • 34f Fornwald RM, Fritz JA, Wolfe JP. Chem. Eur. J. 2014; 20: 8782
  • 36 Kizil M, Murphy JA. J. Chem. Soc., Chem. Commun. 1995; 1409
  • 37 Patel VF, Pattenden G. Tetrahedron Lett. 1987; 28: 1451
  • 38 Al Adel I, Salami BA, Levisalles J, Rudler H. Bull. Soc. Chim. Fr. 1976; 934
    • 40a Heinrich MR, Blank O, Wetzel A. J. Org. Chem. 2007; 72: 476
    • 40b Kralj A, Wetzel A, Mahmoudian S, Stamminger T, Tschammer N, Heinrich MR. Bioorg. Med. Chem. Lett. 2011; 21: 5446
    • 40c Dietz FR, Prechter A, Gröger H, Heinrich MR. Tetrahedron Lett. 2011; 52: 655
    • 40d Prechter A, Gröger H, Heinrich MR. Org. Biomol. Chem. 2012; 10: 3384
  • 41 Kindt S, Wicht K, Heinrich MR. Org. Lett. 2015; 17: 6122
  • 42 Hartung J. Chem. Rev. 2009; 109: 4500
    • 43a Okamoto T, Oka S. J. Chem. Soc., Chem. Commun. 1984; 289
    • 43b Ghosez A, Göbel T, Giese B. Chem. Ber. 1988; 121: 1807
    • 43c Veit A, Giese B. Synlett 1990; 166
  • 44 de Salas C, Blank O, Heinrich MR. Chem. Eur. J. 2011; 17: 9306
  • 45 De Salas C, Heinrich MR. Green Chem. 2014; 16: 2982
  • 46 Bishop R In Comprehensive Organic Synthesis . Vol. 6. Knochel P, Molander GA. Elsevier; Amsterdam: 2014: 239
    • 47a Tang L, Jia L.-X, Gao Z.-W, Huang X.-J, Zhai C.-M. Huagong Jishu Yu Kaifa 2013; 42: 24
    • 47b Xin Y, Ding J.-S, Liu Y.-H, Ye T, Li Y, Hua W. Shandong Huagong 2012; 41: 22
  • 48 Hari DP, Hering T, König B. Angew. Chem. Int. Ed. 2014; 53: 725 ; Angew. Chem., 2014, 126, 743
    • 49a Qiu S.-Q, Xu Y.-H, Loh T.-P. Org. Lett. 2015; 17: 3462
    • 49b Taisuke I, Takumi M, Yohei S, Motomu K. Chem. Eur. J. 2015; 21: 15955
    • 49c Itoh T, Shimizu Y, Kanai M. Org. Lett. 2014; 16: 2736
    • 49d Zhu C, Falck JR. Angew. Chem. Int. Ed. 2011; 50: 6626
    • 49e Ball LT, Lloyd-Jones GC, Russell CA. Chem. Eur. J. 2012; 18: 2931
    • 49f Satterfield AD, Kubota A, Sanford MS. Org. Lett. 2011; 13: 1076
    • 49g Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235
    • 49h Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2010; 49: 6877
  • 50 Ganushchak NI, Grishchuk BD, Dombrovskii AV. J. Org. Chem. USSR 1973; 9: 1030
  • 51 Grishchuk BD, Gorbovoi PM, Ganuschak NI, Dombrovskii AV. Russ. Chem. Rev. 1994; 63: 257
  • 52 Heinrich MR, Wetzel A, Kirschstein M. Org. Lett. 2007; 9: 3833
  • 53 For kinetics of nitroxide radical trapping (solvent effects), see: Beckwith AL. J, Bowry VW, Ingold KU. J. Am. Chem. Soc. 1992; 114: 4983
  • 54 Hartmann M, Li Y, Studer A. J. Am. Chem. Soc. 2012; 134: 16516
  • 55 Hartmann M, Studer A. Angew. Chem. Int. Ed. 2014; 53: 8180
  • 56 Hartmann M, Gerleve C, Studer A. Synlett 2016; 27: 724
  • 57 Hartmann M, Li Y, Mück-Lichtenfeld C, Studer A. Chem. Eur. J. 2016; 22: 1
  • 58 Taniguchi T, Zaimoku H, Ishibashi H. Chem. Eur. J. 2011; 17: 4307
  • 59 Niu T.-F, Li L, Ni B.-Q, Bu MJ, Cai C, Jiang H.-I. Eur. J. Org. Chem. 2015; 5775
  • 60 Kindt S, Jasch H, Heinrich MR. Chem. Eur. J. 2014; 20: 6251
  • 61 Chen Y.-H, Lee M, Lin Y.-Z, Leow D. Chem. Asian J. 2015; 10: 1618
  • 62 Fehler SK, Pratsch G, Heinrich MR. Angew. Chem. Int. Ed. 2014; 53: 11361
  • 63 Hering T, Hari DP, König B. J. Org. Chem. 2012; 77: 10347
  • 64 Yao C.-J, Sun Q, Rastogi N, König B. ACS Catal. 2015; 5: 2935

    • For rhodium-catalyzed carbothiolations of alkynes, see:
    • 65a Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
    • 65b Arambasic M, Hooper JF, Willis MC. Org. Lett. 2013; 15: 5162
    • 66a Zard SZ. Angew. Chem. Int. Ed. 1997; 36: 672
    • 66b Quiclet-Sire B, Zard SZ. Top. Curr. Chem. 2006; 264: 201
    • 66c Quiclet-Sire B, Zard SZ. Chem. Eur. J. 2006; 12: 6002

      For alternative sulfur-centered radical scavengers, see:
    • 67a Grishchuk BD, Gorbovoi PM, Kudrik EY, Ganuschak NI, Kaspruk BI. Russ. J. Gen. Chem. 1997; 67: 362
    • 67b Grishchuk BD, Kudrik EY, Gorbovoi PM, Ganushchak NI, Avrashkova TV. Russ. J. Gen. Chem. 1997; 67: 1556
    • 68a Grishchuk BD, Klimnyuk SI, Zagrichuk GY, Kravchenyuk MP, Kolomiets TS, Gorbovoi PM. Pharm. Chem. J. 1999; 33: 143
    • 68b Grishchuk BD, Vlasyk LI, Blinder AV, Kudrik EYa, Gorbovoi PM. Pharm. Chem. J. 1996; 30: 630
    • 68c Grishchuk BD, Baranovskii VS, Gorbovoi PM, Ganushchak NI. Russ. J. Gen. Chem. 2003; 73: 957
    • 68d Grishchuk BD, Baranovskii VS, Koval’skii YaP, Gorbovoi PM. Russ. J. Gen. Chem. 2004; 74: 1907
    • 68e Grishchuk BD, Baranovskii VS, Simchak RV, Tulaidan GN, Gorbovoi PM. Russ. J. Gen. Chem. 2006; 76: 936
    • 68f Baranovskii VS, Simchak RV, Grishchuk BD. Russ. J. Gen. Chem. 2009; 79: 269
    • 69a Gorbovoi PM, Kudrik EY, Grishchuk BD. Russ. J. Gen. Chem. 1998; 68: 1132
    • 69b Grishchuk BD, Kudrik EY, Gorbovoi PM, Ganushchak NI. Russ. J. Gen. Chem. 1996; 66: 1482
  • 70 For mechanistic investigations, see: Tournier L, Zard SZ. Tetrahedron Lett. 2005; 46: 971
  • 71 Baranovskii VS, Petrushka BM, Fesak AYu, Grishchuk BD. Russ. J. Gen. Chem. 2013; 83: 325
  • 72 Hari DP, Hering T, König B. Org. Lett. 2012; 14: 5334
  • 73 For an alternative approach to benzothiophenes via a Meerwein arylation reaction, see: Obushak ND, Matiichuk ND, Martyak RL. Chem. Heterocycl. Compd. 2003; 39: 878
  • 74 Gansuhchak NI, Obushak ND, Polishchuk OP. J. Org. Chem. USSR 1986; 22: 2291

    • For related alkyl- and acyl-carbofluorinations, see:
    • 75a Barker TJ, Boger DL. J. Am. Chem. Soc. 2012; 134: 13588
    • 75b Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2014; 50: 7382

      For reviews on radical fluorine transfer, see:
    • 76a Sibi MP, Landais Y. Angew. Chem. Int. Ed. 2013; 52: 3570
    • 76b Ma J.-A, Li S. Org. Chem. Front. 2014; 1: 712
    • 77a Rueda-Becerril M, Sazepin CC, Leung JC. T, Okbinoglu T, Kennepohl P, Paquin J.-F, Sammis GM. J. Am. Chem. Soc. 2012; 134: 4026
    • 77b Yin F, Wang Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 10401
  • 78 Kindt S, Heinrich MR. Chem. Eur. J. 2014; 20: 15344

    • Selectfluor [1-chloromethyl-4-fluoro-1,4-diazabicyclo[2.2.2] octane bis(tetrafluoroborate)]:
    • 79a Singh RP, Shreeve JM. Acc. Chem. Res. 2004; 37: 31
    • 79b Nyffeler PT, Durón SG, Burkart MD, Vincent SP, Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
  • 80 Guo R, Yang H, Tang P. Chem. Commun. 2015; 51: 8829