Synthesis 2016; 48(20): 3470-3478
DOI: 10.1055/s-0035-1562466
short review
© Georg Thieme Verlag Stuttgart · New York

Metal-Catalyzed Cyclizations to Pyran and Oxazine Derivatives

Jesús A. Varela
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: carlos.saa@usc.es
,
Carlos Saá*
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain   Email: carlos.saa@usc.es
› Author Affiliations
Further Information

Publication History

Received: 03 June 2016

Accepted: 06 June 2016

Publication Date:
26 July 2016 (online)


Abstract

Pyrans are privileged heterocyclic structures found in numerous natural compounds with extraordinary biological activities. The synthesis of these relevant structures has attracted a great deal of attention over the years. Catalytic methodologies based on the activation of neutral unsaturated functionalities of acyclic compounds that undergo intramolecular cyclizations have achieved prominent synthetic relevance. In this short review, we discuss the successful construction of dihydropyran and dihydro-1,4-oxazine derivatives from acyclic precursors by metal-catalyzed intramolecular cyclizations through carbon–carbon, carbon–oxygen, and carbon–nitrogen bond formation. Remarkable synthetic applications are highlighted.

1 Introduction

2 3,4-Dihydropyrans

3 3,4-Dihydro-1,4-oxazines

4 3,6-Dihydropyrans

5 Synthetic Applications

6 Summary

 
  • References

    • 1a Fravel BW. Pyrans and Their Benzo Derivatives: Applications . In Comprehensive Heterocyclic Chemistry III . Vol. 7. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Dordrecht: 2008: 701
    • 1b Elliott MC. J. Chem. Soc., Perkin Trans. 1 2002; 2301
    • 1c Elliott MC, Williams E. J. Chem. Soc., Perkin Trans. 1 2001; 2303
    • 1d Elliott MC. J. Chem. Soc., Perkin Trans. 1 2000; 1291
    • 1e Mitchinson A, Nadin A. J. Chem. Soc., Perkin Trans. 1 2000; 2862
    • 1f Boivin TL. B. Tetrahedron 1987; 43: 3309
    • 2a Kurahashi T, Matsubara S. Acc. Chem. Res. 2015; 48: 1703
    • 2b Cornil J, Gonnard L, Bensoussan C, Serra-Muns A, Gnamm C, Commandeur C, Commandeur M, Reymond S, Guerinot A, Cossy J. Acc. Chem. Res. 2015; 48: 761
    • 2c Synthesis of Heterocycles via Metal-Catalyzed Reactions that Generate One or More Carbon-Heteroatom Bonds. Wolfe JP. Springer; Heidelberg: 2013
    • 2d Alcaide B, Almendros P, Alonso JM. Org. Biomol. Chem. 2011; 9: 4405
    • 2e Hintermann L. Top. Organomet. Chem. 2010; 31: 123
    • 2f Larrosa I, Romea P, Urpí F. Tetrahedron 2008; 64: 2683
    • 2g Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2004; 104: 3079
    • 2h Beller M, Seayad J, Tillack A, Jiao H. Angew. Chem. Int. Ed. 2004; 43: 3368
  • 3 For a special issue edited by P. A. Clarke, see: Tetrahedron 2011; 67: 4949
    • 4a Smoot JT, Demchenko AV. Adv. Carbohydr. Chem. Biochem. 2009; 62: 161
    • 4b Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611
    • 4c Schmidt RR, Vankar YD. Acc. Chem. Res. 2008; 41: 1059
    • 4d Ramesh NG, Balasubramanian KK. Eur. J. Org. Chem. 2003; 4477
    • 4e Seeberger PH, Bilodeau MT, Danishefsky SJ. Aldrichimica Acta 1997; 30: 75
    • 5a Yu B, Wang L.-X, Danishefsky S, Crich D. Carbohydrate Synthesis towards Glycobiology . Ding K, Dai L.-X. Wiley-VCH; Weinheim: 2012
    • 5b Nicolaou KC, Mitchell HJ. Angew. Chem. Int. Ed. 2001; 40: 1576
    • 5c Sears P, Wong C.-H. Science (Washington, D.C.) 2001; 291: 2344
    • 6a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 6b Fox BM, Sugimoto K, Iio K, Yoshida A, Zhang J, Li K, Hao X, Labelle M, Smith M.-L, Rubenstein SM, Ye G, McMinn D, Jackson S, Choi R, Shan B, Ma J, Miao S, Matsui T, Ogawa N, Suzuki M, Kobayashi A, Ozeki H, Okuma C, Ishii Y, Tomimoto D, Furakawa N, Tanaka M, Matsushita M, Takahashi M, Inaba T, Sagawa S, Kayser F. J. Med. Chem. 2014; 57: 3464
    • 6c Matralis AN, Kourounakis AP. J. Med. Chem. 2014; 57: 2568
    • 6d Li W, Duan X, Yan H, Xin H. Org. Biomol. Chem. 2013; 11: 4546
    • 6e Kourounakis AP, Charitos C, Rekka EA, Kourounakis PN. J. Med. Chem. 2008; 51: 5861
  • 7 Varela-Fernández A, González-Rodríguez C, Varela JA, Castedo L, Saá C. Org. Lett. 2009; 11: 5350
    • 8a Thansandote P, Chong E, Feldmann K.-O, Lautens M. J. Org. Chem. 2010; 75: 3495
    • 8b Kundu NG, Chaudhuri G, Upadhyay A. J. Org. Chem. 2001; 66: 20
    • 9a Varela JA, González-Rodríguez C, Saá C. Top. Organomet. Chem. 2014; 48: 237
    • 9b Trost BM, McClory A. Chem. Asian J. 2008; 3: 164
    • 9c Metal Vinylidenes and Allenylidenes in Catalysis: From Reactivity to Applications in Synthesis. Bruneau C, Dixneuf P. Wiley-VCH; Weinheim: 2008
    • 9d Bruneau C, Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
    • 10a McDonald FE, Reddy KS. J. Organomet. Chem. 2001; 617–618: 444
    • 10b McDonald FE, Reddy KS, Díaz Y. J. Am. Chem. Soc. 2000; 122: 4304
    • 10c McDonald FE. Chem. Eur. J. 1999; 5: 3103
  • 11 Trost BM, Rhee YH. J. Am. Chem. Soc. 2002; 124: 2528
  • 12 Liu PN, Su FH, Wen TB, Sung HH. Y, Williams ID, Jia G. Chem. Eur. J. 2010; 16: 7889
  • 13 Zacuto MJ, Tomita D, Pirzada Z, Xu F. Org. Lett. 2010; 12: 684
  • 14 Trost BM, Rhee YH. J. Am. Chem. Soc. 2003; 125: 7482
  • 15 Fujino D, Yorimitsu H, Osuka A. J. Am. Chem. Soc. 2014; 136: 6255
  • 16 Trost BM, Frontier AJ. J. Am. Chem. Soc. 2000; 122: 11727
  • 17 Silva F, Reiter M, Mills-Webb R, Sawicki M, Klar D, Bensel N, Wagner A, Gouverneur V. J. Org. Chem. 2006; 71: 8390
    • 18a Baker-Glenn C, Hodnett N, Reiter M, Ropp S, Ancliff R, Gouverneur V. J. Am. Chem. Soc. 2005; 127: 1481
    • 18b Reiter M, Turner H, Mills-Webb R, Gouverneur V. J. Org. Chem. 2005; 70: 8478
    • 18c Reiter M, Ropp S, Gouverneur V. Org. Lett. 2004; 6: 91
  • 19 Cambeiro F, López S, Varela JA, Saá C. Angew. Chem. Int. Ed. 2014; 53: 5959
  • 20 Lee AL, Malcolmson SJ, Puglisi A, Schrock RR, Hoveyda AH. J. Am. Chem. Soc. 2006; 128: 5153
  • 21 Lv L, Xi H, Bai X, Li Z. Org. Lett. 2015; 17: 4324
    • 22a Bogacki R, Gill DM, Kerr WJ, Lamont S, Parkinson JA, Paterson LC. Chem. Commun. 2013; 49: 8931
    • 22b Brice H, Gill DM, Goldie L, Keegan PS, Kerr WJ, Svensson PH. Chem. Commun. 2012; 48: 4836
  • 23 Kalepu J, Katukojvala S. Angew. Chem. Int. Ed. 2016; 55 in press; DOI: 10.1002/anie.201600878
  • 24 Ma X, Pan S, Wang H, Chen W. Org. Lett. 2014; 16: 4554
  • 25 Zulys A, Dochnahl M, Hollmann D, Loehnwitz K, Herrmann J.-S, Roesky PW, Blechert S. Angew. Chem. Int. Ed. 2005; 44: 7794
  • 26 Arai MA, Kuraishi M, Arai T, Sasai H. J. Am. Chem. Soc. 2001; 123: 2907
  • 27 Gockel B, Krause N. Org. Lett. 2006; 8: 4485
  • 28 Zriba R, Gandon V, Aubert C, Fensterband L, Malacria M. Chem. Eur. J. 2008; 14: 1482
    • 29a Alcaide B, Almendros P, Carrascosa R, Martínez del Campo T. Chem. Eur. J. 2010; 16: 13243
    • 29b Alcaide B, Almendros P, Martínez del Campo T, Soriano E, Marco-Contelles JL. Chem. Eur. J. 2009; 15: 9127
  • 30 Pawliczek M, Schneider TF, Maass C, Stalke D, Werz DB. Angew. Chem. Int. Ed. 2015; 54: 4119
  • 31 Trost BM, Ashfeld BL. Org. Lett. 2008; 10: 1893
  • 32 Trost BM, Frontier AJ, Thiel OR, Yang H, Dong G. Chem. Eur. J. 2011; 17: 9762
  • 33 Liao X, Zhou H, Wearing XZ, Ma J, Cook JM. Org. Lett. 2005; 7: 3501
  • 34 Sawama Y, Sawama Y, Krause N. Org. Biomol. Chem. 2008; 6: 3573