Synthesis 2016; 48(20): 3449-3458
DOI: 10.1055/s-0035-1562475
short review
© Georg Thieme Verlag Stuttgart · New York

Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis

Manjaly J. Ajitha
Division of Physical Sciences & Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia   Email: hkw@kaust.edu.sa
,
Kuo-Wei Huang*
Division of Physical Sciences & Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia   Email: hkw@kaust.edu.sa
› Author Affiliations
Further Information

Publication History

Received: 11 May 2016

Accepted after revision: 19 June 2016

Publication Date:
17 August 2016 (online)


Abstract

Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (<4 kcal/mol) offer much flexibility in the preorganization of molecular entities required to achieve high enantioselectivity. Herein, we review some recent important organocatalytic asymmetric reactions where a NCHB serves as a critical factor in determining the stereoselectivity.

1 Introduction

2 Hydrogen Bonds (HBs) and Non-Classical Hydrogen Bonds (NCHBs)

3 Early Developments in NCHBs

4 Selected Examples of NCHBs in Organic Transformations

5 Recent Examples of NCHBs in Enantioselective Reactions

6 Conclusions and Outlook

 
  • References

    • 1a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 1b Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 1c Gaunt MJ, Johansson CC. C, McNally A, Vo NT. Drug Discovery Today 2007; 12: 8
    • 1d Pellissier H. Tetrahedron 2007; 63: 9267
    • 1e Barbas III CF. Angew. Chem. Int. Ed. 2008; 47: 42
    • 1f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638
    • 1g Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
    • 1h Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
  • 2 MacMillan DW. C. Nature (London) 2008; 455: 304
  • 3 Johnston RC, Cheong PH. Y. Org. Biomol. Chem. 2013; 11: 5057
  • 4 Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243 ; and references contained therein
  • 5 Pauling L. The Nature of the Chemical Bond . 3rd ed Cornell University Press; Ithaca: 1960. the 1st edition was published in 1936
  • 6 Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl. Chem. 2011; 83: 1619
  • 7 Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenber JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Pure Appl. Chem. 2011; 83: 1637
  • 8 Jacobsen EN, MacMillan DW. C. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20618 ; and references therein
  • 9 Weinhold F, Klein RA. Angew. Chem. Int. Ed. 2014; 53: 1
  • 10 Desiraju GR, Steiner T. The Weak Hydrogen Bond In Structural Chemistry and Biology. In International Union of Crystallography Monographs on Crystallography. Vol. 9. OUP/IUCr; Oxford: 2001
  • 11 Hobza P, Havlas Z. Chem. Rev. 2000; 100: 4253
  • 12 Li X, Liu L, Schlegel HB. J. Am. Chem. Soc. 2002; 124: 9639
  • 13 Kumler WD. J. Am. Chem. Soc. 1935; 57: 600
  • 14 Glasstone S. Trans. Faraday Soc. 1937; 33: 200
  • 15 Gordy W. J. Chem. Phys. 1939; 7: 163
  • 16 Gordy W. J. Chem. Phys. 1939; 7: 93
  • 17 Allerhand A, Schleyer Pv R. J. Am. Chem. Soc. 1963; 85: 1715
  • 18 Dulmage WJ, Lipscomb WN. Acta Crystallogr. 1951; 4: 330
  • 19 Dougill MW, Jeffrey GA. Acta Crystallogr. 1953; 6: 831
  • 20 Sutor DJ. Nature (London) 1962; 195: 68
  • 21 Taylor R, Kennard O. J. Am. Chem. Soc. 1982; 104: 5063
    • 22a Bader RF. Atoms in Molecules: A Quantum Theory . Clarendon Press; Oxford: 1990
    • 22b Biegler-König F, Schönbohm J. J. Comp. Chem. 2002; 23: 1489
  • 23 Koch U, Popelier PL. A. J. Phys. Chem. 1995; 99: 9747
    • 24a Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W. J. Chem. Theory Comput. 2011; 7: 625
    • 24b Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W. J. Am. Chem. Soc. 2010; 132: 6498
  • 25 Wiberg KB. Tetrahedron 1968; 24: 1083
  • 26 Mayer I. Chem. Phys. Lett. 1983; 97: 270
  • 27 Mayer I. J. Comput. Chem. 2007; 28: 204
  • 28 Suárez D, Sordo TL, Sordo JA. J. Am. Chem. Soc. 1994; 116: 763
    • 29a Corey EJ, Barnes-Seeman D, Lee TW. Tetrahedron Lett. 1997; 38: 4351
    • 29b Corey EJ, Barnes-Seeman D, Lee TW. Tetrahedron Lett. 1997; 38: 1699
    • 29c Corey EJ, Rohde JJ. Tetrahedron Lett. 1997; 38: 37
    • 29d Corey EJ, Rohde JJ, Fischer A, Azimioara MD. Tetrahedron Lett. 1997; 38: 33
  • 30 Paddon-Row MN, Anderson CD, Houk KN. J. Org. Chem. 2009; 74: 861
  • 31 Corey EJ, Lee TW. Chem. Commun. 2001; 1321
  • 32 Washington I, Houk KN. Angew. Chem. Int. Ed. 2001; 40: 4485
  • 33 Cannizzaro CE, Houk KN. J. Am. Chem. Soc. 2002; 124: 7163
  • 34 Kar T, Scheiner S. J. Phys. Chem. A 2004; 108: 9161
  • 35 García Ruano JL, Fraile A, González G, Martín MR, Clemente FR, Gordillo R. J. Org. Chem. 2003; 68: 6522
  • 36 Bojin MD, Tantillo DJ. J. Phys. Chem. A 2006; 110: 4810
    • 37a Paton RS, Goodman JM. Org. Lett. 2006; 8: 4299
    • 37b Paton RS, Goodman JM. J. Org. Chem. 2008; 73: 1253
  • 38 Knowles RR, Jacobsen EN. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20678
  • 39 Shen X, Jones GO, Watson DA, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 11278
  • 40 Tan B, Lu Y, Zeng X, Chua PJ, Zhong G. Org. Lett. 2010; 12: 2682
  • 41 Zhang W, Tan D, Lee R, Tong G, Chen W, Qi B, Huang KW, Tan CH, Jiang Z. Angew. Chem. Int. Ed. 2012; 51: 10069
  • 42 Maity P, Pemberton RP, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2013; 135: 16380
  • 43 Pattawong O, Tan DQ, Fettinger JC, Shaw JT, Cheong PH. Y. Org. Lett. 2013; 15: 5130
  • 44 Xue XS, Li X, Yu A, Yang C, Song C, Cheng JP. J. Am. Chem. Soc. 2013; 135: 7462
  • 45 Zhu B, Zhang W, Lee R, Han Z, Yang W, Tan D, Huang KW, Jiang Z. Angew. Chem. Int. Ed. 2013; 52: 6666
  • 46 Yang H, Wong MW. J. Am. Chem. Soc. 2013; 135: 5808
  • 47 Han X, Lee R, Chen T, Luo J, Lu Y, Huang KW. Sci. Rep. 2013; 3: 2557 ; http://www.nature.com/srep/doi:10.1038/ srep02557
  • 48 Jindal G, Sunoj RB. Angew. Chem. Int. Ed. 2014; 53: 4432
  • 49 Grimblat N, Sugiura M, Pellegrinet SC. J. Org. Chem. 2014; 79: 6754
  • 50 Kanomata K, Toda Y, Shibata Y, Yamanaka M, Tsuzuki S, Gridnev ID, Terada M. Chem. Sci. 2014; 5: 3515
  • 51 Paton RS. Org. Biomol. Chem. 2014; 12: 1717
  • 52 Seguin TJ, Lu T, Wheeler SE. Org. Lett. 2015; 17: 3066
  • 53 Johnston CP, Kothari A, Sergeieva T, Okovytyy SI, Jackson KE, Paton RS, Smith MD. Nat. Chem. 2015; 7: 171
  • 54 Ajitha MJ, Huang K.-W. Org. Biomol. Chem. 2015; 13: 10981